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CHAPTER 1

Combinatorial Analysis

1.1 INTRODUCTION

1.2 THE BASIC PRINCIPLE OF COUNTING

1.3 PERMUTATIONS

1.4 COMBINATIONS

1.5 MULTINOMIAL COEFFICIENTS

1.6 THE NUMBER OF INTEGER SOLUTIONS OF EQUATIONS

1.1 INTRODUCTION

Here is a typical problem of interest involving probability: A communication system
is to consist of n seemingly identical antennas that are to be lined up in a linear order.
The resulting system will then be able to receive all incoming signals—and will be
called functional—as long as no two consecutive antennas are defective. If it turns
out that exactly m of the n antennas are defective, what is the probability that the
resulting system will be functional? For instance, in the special case where n = 4 and
m = 2, there are 6 possible system configurations, namely,

0110
0101
1010
0011
1001
1100

where 1 means that the antenna is working and O that it is defective. Because the
resulting system will be functional in the first 3 arrangements and not functional in
the remaining 3, it seems reasonable to take % = % as the desired probability. In
the case of general n and m, we could compute the probability that the system is
functional in a similar fashion. That is, we could count the number of configurations
that result in the system’s being functional and then divide by the total number of all
possible configurations.

From the preceding discussion, we see that it would be useful to have an effective
method for counting the number of ways that things can occur. In fact, many prob-
lems in probability theory can be solved simply by counting the number of different
ways that a certain event can occur. The mathematical theory of counting is formally
known as combinatorial analysis.

1.2 THE BASIC PRINCIPLE OF COUNTING

The basic principle of counting will be fundamental to all our work. Loosely put, it
states that if one experiment can result in any of m possible outcomes and if another
experiment can result in any of » possible outcomes, then there are mn possible out-
comes of the two experiments.
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The basic principle of counting

Suppose that two experiments are to be performed. Then if experiment 1 can result
in any one of m possible outcomes and if, for each outcome of experiment 1, there
are n possible outcomes of experiment 2, then together there are mn possible out-
comes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating all
the possible outcomes of the two experiments; that is,

11, 4,2), ..., A,n)
20, 2,2, ..., 2,n

(m1), (m2), ..., (mn)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible out-
come and experiment 2 then results in its jth possible outcome. Hence, the set of
possible outcomes consists of m rows, each containing n elements. This proves the
result.

EXAMPLE 2a

A small community consists of 10 women, each of whom has 3 children. If one woman
and one of her children are to be chosen as mother and child of the year, how many
different choices are possible?

Solution. By regarding the choice of the woman as the outcome of the first experi-
ment and the subsequent choice of one of her children as the outcome of the second
experiment, we see from the basic principle that there are 10 X 3 = 30 possible
choices. |

When there are more than two experiments to be performed, the basic principle
can be generalized.

The generalized basic principle of counting

If r experiments that are to be performed are such that the first one may result in
any of n; possible outcomes; and if, for each of these n; possible outcomes, there
are ny possible outcomes of the second experiment; and if, for each of the possible
outcomes of the first two experiments, there are n3 possible outcomes of the third
experiment; and if ..., then there is a total of ny - n3 - - - n, possible outcomes of the
r experiments.

EXAMPLE 2b

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2
seniors. A subcommittee of 4, consisting of 1 person from each class, is to be chosen.
How many different subcommittees are possible?
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Solution. We may regard the choice of a subcommittee as the combined outcome of
the four separate experiments of choosing a single representative from each of the
classes. It then follows from the generalized version of the basic principle that there
are 3 X 4 X 5 X 2 = 120 possible subcommittees. ]

EXAMPLE 2c

How many different 7-place license plates are possible if the first 3 places are to be
occupied by letters and the final 4 by numbers?

Solution. By the generalized version of the basic principle, the answer is 26 - 26 -
26 - 10 - 10 - 10 - 10 = 175,760,000. ]

EXAMPLE 2d

How many functions defined on » points are possible if each functional value is either
Oor1?

Solution. Let the points be 1,2,...,n. Since f(i) must be either 0 or 1 for each i =
1,2,...,n, it follows that there are 2" possible functions. [ ]

EXAMPLE 2¢

In Example 2c, how many license plates would be possible if repetition among letters
or numbers were prohibited?

Solution. In this case, there would be 26 - 25 - 24 - 10 - 9 - 8 - 7 = 78,624,000
possible license plates. n

1.3 PERMUTATIONS

How many different ordered arrangements of the letters a, b, and c are possible? By
direct enumeration we see that there are 6, namely, abc, ach, bac, bca, cab, and cba.
Each arrangement is known as a permutation. Thus, there are 6 possible permutations
of a set of 3 objects. This result could also have been obtained from the basic principle,
since the first object in the permutation can be any of the 3, the second object in the
permutation can then be chosen from any of the remaining 2, and the third object
in the permutation is then the remaining 1. Thus, there are 3 - 2 - 1 = 6 possible
permutations.

Suppose now that we have n objects. Reasoning similar to that we have just used
for the 3 letters then shows that there are

nn - NHin—-2)---3-2.-1=n!
different permutations of the n objects.

EXAMPLE 3a

How many different batting orders are possible for a baseball team consisting of 9
players?

Solution. There are 9! = 362,880 possible batting orders. [ ]
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EXAMPLE 3b

A class in probability theory consists of 6 men and 4 women. An examination is given,
and the students are ranked according to their performance. Assume that no two

students obtain the same score.

(a) How many different rankings are possible?
(b) If the men are ranked just among themselves and the women just among them-
selves, how many different rankings are possible?

Solution. (a) Because each ranking corresponds to a particular ordered arrangement
of the 10 people, the answer to this part is 10! = 3,628,800.

(b) Since there are 6! possible rankings of the men among themselves and 4! possi-
ble rankings of the women among themselves, it follows from the basic principle that
there are (61)(4!) = (720)(24) = 17,280 possible rankings in this case.

EXAMPLE 3c

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are
mathematics books, 3 are chemistry books, 2 are history books, and 1 is a language
book. Ms. Jones wants to arrange her books so that all the books dealing with the
same subject are together on the shelf. How many different arrangements are
possible?

Solution. There are 4! 3! 2! 1! arrangements such that the mathematics books are
first in line, then the chemistry books, then the history books, and then the language
book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! possible
arrangements. Hence, as there are 4! possible orderings of the subjects, the desired
answer is 4! 4! 31 2! 1! = 6912. s

We shall now determine the number of permutations of a set of n objects when cer-
tain of the objects are indistinguishable from each other. To set this situation straight
in our minds, consider the following example.

EXAMPLE 3d
How many different letter arrangements can be formed from the letters PEPPER?

Solution. We first note that there are 6! permutations of the letters Py E1 P, P3E;R
when the 3P’s and the 2E’s are distinguished from each other. However, consider
any one of these permutations—for instance, Py P E1P3E»R. If we now permute the
P’s among themselves and the E’s among themselves, then the resultant arrangement
would still be of the form PPEPER. That is, all 3! 2! permutations

PP,E{P3E;R P1P,E;P3E(R

P1PyEP,E>R
PP E\P3E>R
PyP3sE{P1E3R
P3P E\PE3R
P3;P,E P E>R

P\P3E;PyER
P,PE;P3E R
P,P3E>P ER
P3P1E>PLE{R
P3P,E>PLEJR

are of the form PPEPER. Hence, there are 6!/(3! 2!) = 60 possible letter arrange-
ments of the letters PEPPER. [}



