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PREFACE

This book presents a collection of review articles providing both
an introduction and a survey of recent advances in the field of
Finite Size Scaling in phase transitions and related disciplines. Both
theoretical foundations and numerical methods are covered. This
includes scaling theory, the renormalization group approach, Monte
Carlo and transfer matrix numerical applications, and recent uses of

finite size scaling in Lattice Gauge Theory and for random systems.

Finite size scaling theory attempts to describe how long-scale,
collective phenomena associated with the onset of large fluctuations
near critical points, at first order phase transitions, in polymer sys-
tems, etc., manifest themselves in small samples (capillaries, pores),
and in numerical computer simulations which are always done on
limited-size lattice or continuum models. The latter application of
finite size scaling theory has grown in importance in the last decade.
Indeed, the advances in large-scale computing, based largely on the
Monte Carlo method, have allowed accurate evaluation of bulk, sur-
face, and interfacial properties of statistical mechanical models, as
well as applications in particle physics, polymers, and random sys-
tems. All these studies employ finite size scaling ideas and also
provide stimuli for theoretical advances, suggesting new emphases,

topics, and testing the existing theoretical predictions.

Reviews in this book offer convenient reference sources, intro-
ductions, and guides to current research, with an emphasis on vari-
ous numerical methods and their relations to finite size effects. Each

review has a substantial introductory component, and the book as a
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whole should be accessible to readers with no special prior knowledge
of finite size scaling theory or details of its applications in conjunc-
tion with numerical methods. However, a general background in

phase transitions or a related field is assumed.

The first three reviews (Chapters I-III), by Privman, Jasnow,
and Rudnick, are theoretical. They provide an introduction to
the modern theory of finite-size effects. Chapter I summarizes
scaling theory and related approaches, for critical points, for inter-
facial properties, and also for first-order transitions. In Chapter II,
field-theoretical techniques are surveyed, culminating in the formu-
lation of the renormalization group method for finite systems. Then,
Chapter III presents results for spherical models which serve to il-

lustrate and test the general theoretical predictions.

The next three chapters (Chapters IV-VI), by Binder, Landau,
and Mon, review applications of the finite size scaling theory in
Monte Carlo numerical studies of critical phenomena. All three
reviews describe quantities, geometries, and scaling results in the
formulation appropriate for Monte Carlo data analyses. Specific re-
sults for selected models and details of their numerical derivation
followed by finite-size analysis are described, illustrating the gen-
eral versatility and growing importance of the Monte Carlo method.
The emphasis in Chapter IV is on general definitions, anisotropic
systems, and other recent results. Chapter V presents diverse exam-
ples of applications of Monte Carlo methods to critical points and
first-order transitions. The focus of Chapter VI is on universal finite-

size amplitudes and associated geometry related properties such as
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surface and corner free energies, etc.

Recent theoretical developments related to conformal invariance
and other new exact results obtained for two-dimensional models
have generated further interest in numerical techniques based on
the transfer matriz method. In two dimensions, the transfer ma-
trix approach, termed phenomenological renormalization, is among
the most powerful methods of estimating critical-point quantities.
Foundations of the phénomenological renormalization method, se-
lected results, and their finite size scaling analyses are reviewed in
Chapters VII and VIII by Nightingale and Henkel. Chapter VII is
centered on more conventional isotropic model results, as well as
on a general overview of the field. Chapter VIII is devoted to the
quantum Hamiltonian variant of the method. Both chapters dis-
cuss connections with conformal invariance and other exact results
in two dimensions, and also recent applications of the phenomeno-

logical renormalization method to three-dimensional systems.

The last three chapters of the book (Chapters IX-XI), by
Bhanot, Young, and Schulman, are devoted to finite size effects in
systems for which the theoretical framework, and the appropriate
nomenclature, are outside the more “traditional” uses of finite size
scaling ideas in phase transitions. Thus, Chapter IX describes appli-
cations of finite size scaling, including a survey of recent numerical
results, in Lattice Gauge Theories of particle physics. Chapter X is
devoted to spin glasses. Generally, for random systems, new aspects
of the finite size behavior enter, related to long equilibration times,

and to averaging over randomness. Finally, Chapter XI introduces
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finite size effects associated with metastable phases.

The editor wishes to express his thanks to C.R. Doering and
M.E. Fisher for their interest in this project and valuable sugges-
tions, and to the contributing authors for a job well done. He hopes
that in addition to being a comprehensive summary/introduction,
this book will convey the excitement and dynamics of a rapidly grow-

ing and developing field of science.

Vladimir Privman
October 1989
Potsdam, New York
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1. INTRODUCTION

1.1. Opening Remarks

In this chapter we review the finite-size scaling theory of contin-
uous phase transitions (critical points), as well as certain results on
finite-size effects at first-order transitions, and also for systems with
fluctuating interfaces. Studies of finite-size effects are important in
interpreting experimental data and numerical results of Monte Carlo
(MC) and transfer matrix calculations, and in connection with other
theoretical developments, notably, conformal invariance and surface

critical phenomena.

Our exposition will be biased towards numerical data analyses
where a prototype finite-size system is d-dimensional hypercubic, L¢,
or nearly hypercubic-shaped, or cylindrical, L¢~! x oo, (for transfer
matrix studies). Much of our discussion will refer to the theoreti-

cally most studied case of periodic boundary conditions which are a



natural choice in many MC and transfer matrix applications. Re-
sults for other boundary conditions will be described, when available.
While most of the considerations will be quite general, we will use
the nomenclature of the ferromagnetic n-vector models on regular
d-dimensional lattices. Note that transfer matrix calculations are
usually performed in d = 2. Only recently, some d = 3 studies have
been reported. On the other hand, MC calculations can be carried

out in dimensionalities as high as d = 5 or 6.

1.2. QOutline of the Review

As previously mentioned, this chapter is devoted to scaling the-
ories of finite-size effects. Other chapters of this book cover calcu-
lational methods, e.g., the Renormalization Group (RG) approach,

and numerical applications.

Since the introduction of the finite-size scaling ideas by Fisher
and co-workers in early seventies, several comprehensive expository
and review articles have appeared covering both the original scaling
ideas and later advancements, see, e.g., [1-7]. Some of the important
contributions have been reprinted in [8]. In the following subsection
of the introduction (Sect. 1.3) a simple finite-size scaling ansatz [1]

will be explained.

The modern form of the critical-point finite-size scaling [9], re-
viewed in Sect. 2, incorporates hyperscaling ideas and leads to the
identification of universal finite-size critical-point amplitudes. Uni-
versal amplitudes and, more generally, universal quantities derivable

from finite-size scaling functions have been estimated by numerical
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MC, exact 2d conformal invariance, and numerical transfer matrix
calculations. These studies are selectively surveyed in Sect. 3: a

more comprehensive review can be found, e.g., in [10].

Sections 4 and 5 are devoted, respectively, to interfacial finite-
size properties, and to first-order transitions. Size effects on inter-
facial fluctuations (Sect. 4) both near T, and below T,, are quite
diverse and have been studied relatively recently. Finite-size round-
ing of first-order transitions (Sect. 5) involves an interesting phe-
nomenon of the emergence of characteristic finite-size length scales.

Finally, brief summary remarks are given in Sect. 6.

1.3. Basic Scaling Postulate

Near the critical point at ¢t = 0, H = 0, where

t=(T-T,)/T. , (1.1)

and H is the ordering field, various thermodynamic quantities di-
verge. The bulk (L = o) zero field critical behavior of, e.g., the
specific heat, C(t, H; L), is given by

Cs(t,0;00) = (A /a)|t|™“, (1.2)

where s denotes “singular part”, and the exponent « is included in
the amplitudes for historical reasons. The standard scaling expres-

sion in nonzero field (see, e.g., a review [11]) is
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C.(t, Hyoo) = [th™Cy (H|t|™2), (1.3)

where C4 are certain scaling functions. As usual, in the above ex-
pressions the +— refer to ¢ > 0 and t < 0, respectively; the sign ~
indicates that corrections to scaling have been omitted. The expo-
nents o and A = 3+ are universal, as is the ratio A, /A_ . The full
scaling functions C4 can be made universal by introducing proper

metric factors for ¢t and H; see Sect. 2.1-2.2 and further below.

For finite-size systems it has been recognized [1,12,13] that the
system size L “scales” with the correlation length £(t, H; o0) of the
bulk system. (Strictly speaking, this is only true in d = 2,3, see
Sect. 2.1.) Indeed, if L >> £(t, H;00), no significant finite-size ef-
fects should be observed. On the other hand, for L < &(¢, H; 00),
the system size will cut-off long-distance correlations so that an ap-
preciable finite-size rounding of critical-point singularities is to be

expected. Since the bulk correlation length scales similarly to (1.3),

£(t, H;00) & |t|“Z4 (H|t|™2), (1.4)

the finite-size scaling combination is naturally L/|t|~¥. Thus one

assumes

Cu(t, H; L) ~ |t1=Ca (HI™25 LIYY) (1.5)

E(t, H; L) ~ |t|™Z4 (H|t|™*; L|t]"), (1.6)
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with similar expressions for other quantities [1]. It is interesting to

note that no new critical exponents were introduced in (1.5)-(1.6).

Relations (1.5)-(1.6) already yield many useful predictions, for

example,

C.(0,0;L) < L*/¥ and £(0,0;L) L. (1.7)

However, it turns out that additional rearrangement is quite use-
ful. It involves four steps. Firstly, we use the so-called L-scaled
instead of the t-scaled relations, i.e., we redefine the scaling func-
tions to have L enter in nonanalytic powers, while t and H enter
linearly in combinations tL'/* and HLA/”. Secondly, we note that
for a finite-size system there is actually no singularity at ¢, H = 0.
Therefore, the scaling function will be smooth, analytic at the origin
tL'/Y HLA/¥ = 0. No distinct + functions are needed. The third
step is to allow for nonuniversal metric factors for ¢ and H, by using
scaling combinations atL'/¥ and bHLA/¥. Then the scaling func-
tions will be universal. It turns out that no metric factor is needed
for L, see [9]. This issue will be further explored in Sect. 2.1-2.2.
The final point is to use free-energy density, f, measured per kgT,
instead of the specific heat. Note that in terms of the singular parts,

we have a simple relation

0% fs

Co=—ko7p

(1.8)

Various thermodynamic quantities follow from the free energy by

differentiation.



