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PREFACE TO THE SECOND EDITION

While the main skeleton of the first edition is preserved, Chapters 10 and 11 have been rewrit-
ten and expanded in this new edition. The number of example problems in Chapters 8—11 has
been increased to help students to get a better grasp of the basic concepts. Many new prob-
lems have been added, showing step-by-step solution procedures. The concept of time scales
and their role in attributing a physical significance to dimensionless numbers are introduced
in Chapter 3.

Several of my colleagues and students helped me in the preparation of this new edition.
I thank particularly Dr. Ufuk Bakir, Dr. Ahmet N. Eraslan, Dr. Yusuf Uludag, and Merig
Dalgig for their valuable comments and suggestions. I extend my thanks to Russell Fraser for
reading the whole manuscript and improving its English.

ISMAIL TOSUN
(itosun @metu.edu.tr)

Ankara, Turkey
October 2006

The Solutions Manual is available for instructors who have adopted this book for their course. Please contact
the author to receive a copy, or visit http://textbooks.elsevier.com/9780444530219
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PREFACE TO THE FIRST EDITION

During their undergraduate education, students take various courses on fluid flow, heat trans-
fer, mass transfer, chemical reaction engineering, and thermodynamics. Most of them, how-
ever, are unable to understand the links between the concepts covered in these courses and
have difficulty in formulating equations, even of the simplest nature. This is a typical example
of not seeing the forest for the trees.

The pathway from the real problem to the mathematical problem has two stages: perception
and formulation. The difficulties encountered at both of these stages can be easily resolved if
students recognize the forest first. Examination of the trees one by one comes at a later stage.

In science and engineering, the forest is represented by the basic concepts, i.e., conserva-
tion of chemical species, conservation of mass, conservation of momentum, and conservation
of energy. For each one of these conserved quantities, the following inventory rate equation
can be written to describe the transformation of the particular conserved quantity ¢:

Rate of Rate of Rate of ¢ \ Rate of ¢
( @ in ) B ( @ out ) T (generation) o (accumulation)
in which the term ¢ may stand for chemical species, mass, momentum, or energy.

My main purpose in writing this textbook is to show students how to translate the inven-
tory rate equation into mathematical terms at both the macroscopic and microscopic levels.
It is not my intention to exploit various numerical techniques to solve the governing equa-
tions in momentum, energy, and mass transport. The emphasis is on obtaining the equation
representing a physical phenomenon and its interpretation.

I have been using the draft chapters of this text in my third year Mathematical Modelling
in Chemical Engineering course for the last two years. It is intended as an undergraduate
textbook to be used in an (Introduction to) Transport Phenomena course in the junior year.
This book can also be used in unit operations courses in conjunction with standard textbooks.
Although it is written for students majoring in chemical engineering, it can also be used as a
reference or supplementary text in environmental, mechanical, petroleum, and civil engineer-
ing courses.

An overview of the manuscript is shown schematically in the figure below.

Chapter 1 covers the basic concepts and their characteristics. The terms appearing in the
inventory rate equation are discussed qualitatively. Mathematical formulations of the “rate of
input’” and “‘rate of output” terms are explained in Chapters 2, 3, and 4. Chapter 2 indicates
that the total flux of any quantity is the sum of its molecular and convective fluxes. Chapter 3
deals with the formulation of the inlet and outlet terms when the transfer of matter takes place
through the boundaries of the system by making use of the transfer coefficients, i.e., friction
factor, heat transfer coefficient, and mass transfer coefficient. The correlations available in the

literature to evaluate these transfer coefficients are given in Chapter 4. Chapter 5 briefly talks
about the rate of generation in transport of mass, momentum, and energy.

Xix



XX

Preface

CHAPTER 2
Molecular and Convective
Transport

A 4

CHAPTER 3

Interphase Transport and
Transfer Coefficients

CHAPTER 4

Engineering Correlations

Evaluation of Transfer Coefficients

CHAPTER |

Introduction

CHAPTER 3
Rate of Generation in
Momentum, Energy and Mass

Transport
\
Rate of | Rate of + Rate of’ _ Rate of
[npuloprJ_ Outputof ¢ Generation oo | — | Accumulation of ¢ | |

INVENTORY RATE EQUATION

CHAPTER 6
Steady-State
Macroscopic Balances

CHAPTER 7
»> Unsteady-State
Macroscopic Balances

A

Integration over the
volume of the system

CHAPTER 8
Steady-State Microscopic
Balances Without Generation

CHAPTER 9
Steady-State Microscopic
Balances With Generation

CHAPTER 10
Unsteady-State Microscopic
Balances Without Generation

CHAPTER 11
Unsteady-State Microscopic
Balances With Generation




Preface XXi

Traditionally, the development of the microscopic balances precedes that of the macro-
scopic balances. However, it is my experience that students grasp the ideas better if the reverse
pattern is followed. Chapters 6 and 7 deal with the application of the inventory rate equations
at the macroscopic level.

The last four chapters cover the inventory rate equations at the microscopic level. Once the
velocity, temperature, or concentration distributions are determined, the resulting equations
are integrated over the volume of the system to obtain the macroscopic equations covered in
Chapters 6 and 7.

I had the privilege of having Professor Max S. Willis of the University of Akron as my
PhD supervisor, who introduced me to the real nature of transport phenomena. All that [ pro-
fess to know about transport phenomena is based on the discussions with him as a student, a
colleague, a friend, and a mentor. His influence is clear throughout this book. Two of my col-
leagues, Giiniz Giiriiz and Zeynep Hi¢csasmaz Katnas, kindly read the entire manuscript and
made many helpful suggestions. My thanks are also extended to the members of the Chemical
Engineering Department for their many discussions with me and especially to Timur Dogu,
Tiirker Giirkan, Giirkan Karakas, Onder Ozbelge, Canan Ozgen, Deniz Uner, Levent Yilmaz,
and Hayrettin Yiicel. I appreciate the help provided by my students, Giilden Camg¢i, Yesim
Giigbilmez, and Ozge Oguzer, for proofreading and checking the numerical calculations.

Finally, without the continuous understanding, encouragement and tolerance shown by my
wife Ayse and our children Cigdem and Burcu, this book could not have been completed and
I am particularly grateful to them.

Suggestions and criticisms from instructors and students using this book will be appreci-
ated.

ISMAIL TOSUN
(itosun@metu.edu.tr)

Ankara, Turkey
March 2002
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