S

o
-|1'; Kot
D e
'r.r'.
oy

e
i
A
T

T ’,.}-.l:' .
‘7"';"“-,‘ Y?IITII:BS‘

e

-.ﬁiﬁ'f'.lif-f
iy

i

e

T
=T , ] e

' i R S

: A L WOk
o .

£y
>

ety




Dimensional analysis
for engineers

EDWARD S. TAYLOR

PROFESSOR EMERITUS
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CLARENDON PRESS - OXFORD
1974



Oxford University Press, Ely House, London W.1

GLASGOW NEW YORK TORONIO MELBOURNE WELLINGTON

CAPE TOWN IBADAN NAIROBI DAR ES SALAAM LUSAKA ADDIS ABABA
DELHI BOMBAY CALCUTTA MADRAS KARACHI LAHORE DACCA
KUALA LUMPUR SINGAPORE HONG KONG TOKYO

ISBN 0 19 8561229

© OXFORD UNIVERSITY PRESS 1974

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of Oxford University Press

PRINTED IN NORTHERN IRELAND
AT THE UNIVERSITIES PRESS
BELFAST



Dimensional analysis for engineers



Preface

So MUCH has been written on the subject of dimensional analysis that one
wonders why anyone considers it desirable to add to the literature on the
subject. The following quotation is from the preface to the revised edition
of the classic work of Bridgman (1931):

Since the first printing of the book, I have observed to my great surprise
that in spite of what seemed to me a lucid and convincing exposition there
are still differences in fundamental points of view, so that the subject cannot
yet be regarded as entirely removed from the realm of controversy.

Many subsequent books have been written on this subject, but the quota-
tion appears as true today as it was over forty years ago, and the present
author has been unable to suppress a desire to try his hand at the problem
of reducing the controversial element. This desire has been strengthened
by long, direct experience in the use of dimensional analysis as a powerful
aid in making the rapid technical decisions which are required of an engineer.
The author hopes that his somewhat different approach may clarify the
applications and limitations of dimensional analysis.

For the amount of time and effort required to understand it and to use
it, dimensional analysis offers unusually great rewards and it therefore
should become a part of the tool kit of every engineer—often the first tool
to be applied to a new problem.

At present, dimensional analysis is not commonly used in new situations,
even by advanced engineering students. In fact there is an increasing
number of graduates escaping from technical schools having virtually no
facility with this tool. This situation is due, at least in part, to a general
failure of technical schools to introduce the student to dimensional analysis
early enough. While this book is primarily addressed to teachers, advanced
students, and practising engineers, students with an introductory knowledge
of physics should find much of it comprehensible and useful. It is hoped that
teachers of elementary subjects will be inspired to introduce their students
to the simpler ideas of dimensional analysis. While the benefits of using
dimensional analysis in statics, for example, are not generally as large as
those in fluid mechanics, statics offers an early starting point which can be
easily understood, and the rewards are well worth the effort. As the student
progresses to dynamics, the advantages of the dimensional approach be-
come more obvious and, if these advantages are kept before the student,
by the time he arrives at the study of fluid mechanics, heat transfer, and
elasticity, where the reward is very high, the dimensional approach should
have become almost automatic. For advanced students the author can
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only hope that they will experience some of the excitement and fascination
which he himself has felt in applying dimensional analysis to real problems.

The basis of dimensional analysis is usually considered to be the Pi
theorem of Buckingham (1914). An improved proof by Bridgman (1931)
will not be repeated here, but a statement of the theorem (essentially that of
Bridgman) will be found in the appendix. Application of the theorem leads
to the solution of a number of simultaneous linear equations. In order that
the theorem shall correctly state the number of resulting independent
dimensionless groups, these equations must be independent. Solving these
equations and confirming their independence by a matrix method is a some-
what time consuming process. Most engineers find short cuts to determine
the dimensionless groups. If the short cut used does not reveal whether
the equations were indeed independent, the number of groups sometimes
mysteriously turns out to be larger than predicted by the theorem.} A simple
and rapid routine is presented which avoids this difficulty.

There are other situations, unconnected with the Pi theorem, which
sometimes result in a number of dimensionless groups which, although it
may be equal to the number predicted by the Pi theorem, is larger than is
necessary to specify the problem completely. A different approach to the
subject makes the origin of these difficulties clear and indicates how to
avoid them.

Because of difficulties such as these, some engineers prefer postponing
the use of dimensional analysis until the governing equations and the
boundary conditions have been formulated. If one can write the governing
equations and the boundary conditions, the application of dimensional
analysis may then give a more specific and therefore more useful statement
of the form of the solution than if one can only state the pertinent physical
laws. Why, then, not wait to apply dimensional analysis until after the
governing equations have been formulated? In many problems, writing the
governing equations and boundary conditions is not possible even though
the pertinent physical laws are well known. In such cases, dimensional
analysis and experiment may be the only methods of attack available.
Moreover, there is much physical insight to be gained by the application
of dimensional analysis early in the process of learning about any par-
ticular problem.

The author has concentrated on application of the method before the
governing equations are available and has tried to chart some of the more
dangerous shoals on which he himself has run aground. Any arbitrary rule
such as ‘use dimensional analysis first’ tends to make a game of what perhaps
should be strictly business. Dimensional analysis is a tool to be used in con-
junction with any other tools in any order appropriate to the solution of any
particular problem. However, games are sometimes fun and often instructive.
The author has been unable to resist a paragraph or two to suggest a new

T See pp. 79-80, 121-3.
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game—the application of dimensional analysis to mathematical formulation
in the absence of a specific physical problem. This game appears at the end
of Chapter 3.

Many of the examples which will be used are problems in which the
governing equations can easily be written and solved. Such examples have
purposely been chosen so that a check of the result is readily available.
However, the method is clearly most useful in problems which are too
complex to allow such analytical solution or of such a general character that
their analytical solution would require an overwhelming amount of in-
formation.

Further, it is possible to treat problems of a more general nature which
cannot be completely analysed because they are insufficiently specified.
Many valuable generalizations can result from dimensional analysis of such
problems. Some of these generalizations are discussed in Chapter 5.

In working out examples, the author has often found himself diverted by
interest in the example and the rather extraordinary amount of generally
useful information that can sometimes be obtained from a specific problem.
While an effort has been made to resist digression, it is hoped that the
reader will excuse the author if at times he seems to be expounding the
subjects of elasticity, vibration, heat transfer, etc. rather than strictly tending
to the business of dimensional analysis. Naturally, examples have been
chosen from the author’s experience. The paucity of examples from certain
fields reveals the author’s inexperience in those areas. It is hoped that the
reader will be able to supply examples of his own to make up for the author’s
deficiencies.

January 1974 E.S.T.
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1. Introduction: definitions: the fundamental
process

DIMENSIONAL analysis is used, often unconsciously, by practically every
engineer or scientist who deals with physical problems.

In addition to providing a guide to experimental planning and to the
correlation of data, it sometimes offers an aid to the solution of physically-
based differential equations. To the engineer, perhaps its most important
use is as a means of developing the ability to generalize from experience
and thus to apply knowledge to a new situation. Although always perilous,
generalization is essential to bring an element of order into an otherwise
chaotic world.

Dimensional analysis is concerned with the nature of the relationship
between the various quantities which enter a physical problem. Before
dimensional analysis can be applied it must be known that one and only one
relationship exists between a certain number of physical quantities, and
that no pertinent quantities have been omitted, and no extraneous quantities
included.

Such a relationship can be expressed by the symbolism:

9‘5(91, q‘b q37 qn) =09 (11)

where the gs are the numerical values of all the quantities which are pertinent
to the problem.

The process of dimensional analysis is one of grouping the original
quantities into ‘dimensionless ratios’ II to form a new relationship

¢(I1,, I, I3, ... I1,,) =0 (1.2)

which contains all of the information pertinent to (1.1).

In general m < n and thus relation (1.2) is more specific than (1.1).
Since it is more specific, the form (1.2) contains either more information
pertinent to the problem or less extraneous information than the original
relation (1.1).

It will be shown that the latter is the case, that is, dimensional analysis is a
process for eliminating extraneous information from a relation between
quantities. Looked upon in this way, many of the difficulties associated with
the philosophy and processes of dimensional analysis turn out to be the
result of concealed pathways through which extraneous information creeps
into a problem. Furthermore, in certain problems it is possible to remove
additional extraneous information beyond what can be accomplished by the
usual method. As another bonus, this approach illuminates the fallacy of
applying dimensional analysis to a problem which is insufficiently understood
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(for example, one in which even the physical laws involved are unknown).
Attempts to apply dimensional analysis in such cases give the subject the
reputation of being a black art, which in these circumstances it is indeed.
In such cases dimensional analysis approaches the clearly irrational process
of trying to remove extraneous information from no information at all.

Dimensional analysis is a step toward the goal of describing a physical
entity or phenomenon in terms of relationships between numbers. The
ultimate goal can never be reached by dimensional analysis alone, and it is
therefore not a substitute for complete analysis or for experiment. It is
nevertheless a very useful tool, especially for improving physical insight.
It can sometimes give useful results which are virtually impossible to obtain
by any other method.

In order to progress toward the goal it is necessary to have rules for relating
numbers to the problem at hand. For this purpose some definitions are essen-
tial.

Definitions

A physical quantity is a concept such as time, mass, temperature, velocity,
etc. which can be expressed numerically in terms of one or more standards.

Not all physical concepts can be numerically expressed, consequently not
all physical concepts are physical quantities (for example, an electron is
certainly a physical concept but not a physical quantity, although the mass of
an electron and its electric charge are, of course, physical quantities).

Fourier (1822), who used dimensional analysis long before it was formally
recognized, conceived of a physical quantity as having two characteristics:
a numerical measure and a concept. A football field (in the U.S.A.) is 300 ft
long. The numerical measure is 300 and the concept is distance or length.

The word concept calls up a mental image which depends essentially upon
the rules for making a measurement. Thus the concept of length evokes the
mental image of standardized rods laid end to end alongside the length to be
measured. For various reasons the actual method used may not be the one
from which the mental image derives. For example, for measurement of
very large or very small distances, the physical addition of rods is incon-
venient, sometimes to the point of impossibility. We demand that whatever
substitute we use for addition of measuring rods be shown to give the same
results over at least some range of distances, and thus we have a basis
(logically less than perfect) for calling the quantity found by the substitute
method ‘length’.

The words numerical measure imply a comparison in accordance with the
rules of measurement of the quantity in question with some sort of physical
standard.

Standards have been adopted essentially for purposes of communication.
They make it possible for two physical quantities to be compared without
the necessity of bringing the corresponding physical entities together. This is
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done by the introduction of a third entity—the physical standard. Compari-
son of two physical quantities can be made by comparing each with the
physical standard. When communication is direct, we can often get along
without physical standards. Instead of saying ‘cut it 34 inches long’ it is
possible to say ‘make it fit here’.

By their very nature, physical standards are arbitrary and generally un-
related to the problem in hand. Other than convenience in reproduction, it
really does not much matter whether the standard of length was derived from
measurement of a king’s foot, a fraction of the earth’s circumference or a
wavelength of light from a certain line in the spectrum of Krypton 84.
However, it is important that the concept of length as determined from the
rules for its measurement remain the same for any of these standards.

Units are derived from standards. The fact that the standard of length is
now the wavelength of a certain spectral line does not, of course, mean that
this wavelength must be used as a unit. We may still use metres, feet, or
whatever we choose. A unit is, thus, some arbitrary fraction or multiple of a
standard. Standards are changed as time goes on and technology becomes
more sophisticated. Originally a fraction of the earth’s circumference, the
metre is now officially defined as a multiple of a wavelength of light.

The magnitude of the numerical measure depends on the unit or units
of measurement. We may change the measuring unit from feet to yards,
thereby changing the numerical measure of the length of a football field from
300 to 100 but leaving the concept of distance, and of course the actual
physical situation, unaltered. Note that when the size of the unit of length
is changed by a factor (in this case three), every number representing a
numerical measure of length will be changed by the reciprocal of the same
factor. This relationship is true only of a certain class of physical quantities
which will be called /inear. Most common physical quantities are linear.

Linear physical quantities

Of all physical quantities, only those which can be said to have a ‘linear
scale’ can be used in dimensional analysis. Bridgman (1931, 1945) states this
restriction by limiting the application of dimensional analysis to those
quantities which have the property of ‘absolute significance of relative
magnitude’. The phrases ‘twice as fast’ and ‘twice as far’ express relative
magnitudes and have clear quantitative meanings. An interval of one unit
anywhere along the scale of such quantities is, in some sense, equivalent to
one anywhere else in the scale.

Physical quantities of another class have arbitrary scales: for example,
Moh’s scale of hardness (1 talc; 2 gypsum; 3 calcite; 4 fluorite; 5 apatite;
6 feldspar; 7 quartz; 8 topaz; 9 sapphire; 10 diamond). Similar examples are
the Beaufort scale of wind velocity and the International scale of roughness
of the sea. Such quantities can be used to express equalities and inequalities
(diamond is harder than sapphire: 10 > 9) but are otherwise unsuited either
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to numerical computation or to dimensional analysis. Certainly there is no
meaning to the statement that ‘gypsum is twice as hard as talc’ (2 = 2x 1).

Special care is necessary to ensure the validity of dimensional analysis
when dealing with temperature. Twice as hot, if it means more than ‘much
hotter’ does so only in special circumstances. The peculiarity of the tempera-
ture scale seems to be due to the fact that addition of the temperature of
body a to that of body & has no physical meaning; thus the usual method of
constructing a scale by adding units (as in length or mass) is inappropriate.

In order to determine if a physical quantity is linear it is sufficient to ask if
the arithmetical operation of addition has a meaningful physical counterpart.
By the very nature of the measurement of length, for example, it is clear that
addition has such a meaning and that length is indeed a linear physical
quantity. Similarly it is clear that force, mass, and time are linear quantities
in the realm of ordinary engineering problems. If we were to consider prob-
lems involving velocities of the order of the velocity of light, a closer examina-
tion of the linearity of these quantities would be in order (is there any
meaning to the phrase ‘twice as fast as the velocity of light’?).

Primary and derived quantities

It is conventional to look upon certain quantities, for example, length and
time, as ‘primary’ or ‘fundamental’ and other quantities, such as velocity,
acceleration, area, and volume, as ‘derived’. As will appear later, the choice
of primary quantities can be made arbitrarily. The fact that a physical
quantity is designated as a primary quantity merely means that a unit of
measurement can be assigned to it, independent of the units of measurement
chosen for the other primary quantities involved in the problem. For example,
if length and time are chosen as primary quantities, velocity can be expressed
as length per unit time, acceleration as length per unit (time X time), area as
(length)?, etc. On the other hand, it would be equally logical to consider
velocity V and time T as primary quantities and length, area, volume, and
acceleration as derived units equal to VT, (VT)?, (VT)3, (VT?), respectively.
Perhaps the reason we usually look upon velocity as a derived rather than as
a primary quantity is that velocity has usually been determined by measuring
a time and a length and performing a calculation. However, the Doppler-
shift radar technique used by the police to measure the speed of motor cars
is a direct method of measuring velocity without any distance measurement
whatever.t If we did most of our measuring this way it would be more natural
to consider time and velocity as primary quantities and length as a derived
quantity.

In a given problem it is necessary that there be a sufficient number of

T Presumably, a distance must have been measured in establishing the velocity of light,
but this is necessary only to reduce the result to familiar units. If we were content to express
speed as a fraction of the velocity of light, no such calibration would be necessary. (You
are arrested for driving at one ten millionth the velocity of light—67 m.p.h.!)
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primary quantities so that each of the derived quantities can be expressed in
terms of products of these primary quantities.

For purposes of dimensional analysis it is most inconvenient to regard
primary quantities as rigidly imposed. It will appear that each problem, or at
least each class of problems, is best handled by a specially selected set of
primary quantities. The word ‘fundamental’, often applied to primary
quantities, implies an undesirable rigidity and has been avoided for this
reason.

Dimensions

The word dimension refers to the relationship of a derived quantity to
whatever primary quantities have been selected. We say that the dimensions
of area are (length)? or the dimensions of velocity are length/time. These
statements are written: [A] = L2

[V]=LT2

For [ ]read ‘the dimension(s) of’. For = read ‘is (are)’. Primary quantities
are conventionally placed on the right-hand side of these ‘equations’. Thus
the above symbolic shorthand implies that length and time have been
selected as primary quantities while area and velocity have been considered
as derived quantities.

The manner in which the numerical measure of a quantity changes with
changes in the size of measuring units can be used to determine the dimensions
of the quantity. The rule for testing the dimensions of any physical quantity
is as follows. Change the size of measuring unit of one of the primary
quantities by a factor k. The numerical measure of the physical quantity
will change by a factor k=". The primary quantity then appears in the physical
quantity to the nth power. Repeating this process for each primary quantity
in turn will determine the dimensions of the physical quantity. In the example
of the football field a change in the length unit from feet to yards (k = 3)
resulted in a change in the numerical measure of the length of the field by a
factor of 3—from 300 to 100 or k~1. Therefore, in this case n = 1. Changes
in the size of the units of mass, force, time, etc. cause no change in the
numerical measure, and we may conclude that the dimensions of the quantity
we have measured are L*1.

If we agree to derive the unit of area from the unit of length (square feet,
square yards) then the numerical measure of the area of the field would
change by a factor of 9 or k=2, and we would conclude that area has the
dimensions of (length X length) or

[4] = L2
While the procedure in these particular cases is trivial, it provides an essential

test for settling disputes as to the dimensions of any quantity in more complex
situations,

2
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We see that the statement [4] = L
implies that the selection of a unit of length is necessary and sufficient to
determine the numerical measure of an area, while the statement

[V] = LT

implies that selection of a unit of length and one of time are necessary and
sufficient to determine the numerical measure of a velocity.

The dimensions of any quantity depend upon the choice of primary
quantities. In fact, it will subsequently become clear that it is possible for a
given quantity to appear as dimensionless with one choice of primary
quantities and dimensional with another choice.

Dimensionless quantities

It follows that the test of a dimensionless quantity is that its numerical
measure is unchanged by any change in the size of the extraneous measuring
units.

It is sometimes argued that the length of an object measured in metres is
dimensionless, since that number represents the ratio of two lengths—that
of the object to that of the standard metre bar. The crucial point is whether
the size of the measuring unit is derived from a standard which is extraneous
and independent of the particular physical situation or to some standard
derivable from the problem. Pressure cannot be made a dimensionless quantity
by expressing it in atmospheres unless the standard atmospheric pressure is
physically pertinent to the problem under investigation. As an example, the
instantaneous barometric pressure at sea-level in the vicinity of Greenwich
Observatory is continuously recorded. If the instantaneous values were to be
divided by the mean value, one would certainly consider the result to be
dimensionless, although the result of such division would merely be to
express pressure in atmospheres instead of in some other unit. However,
in this case, the standard is indeed derivable from the problem and is not,
therefore, an extraneous unit. Furthermore, lengths expressed in ‘feet’ might
be dimensionless if the investigation concerned the physical proportions of
King Henry VIII, whose foot was used as a standard! Inescapably, the
question as to whether a quantity is dimensionless or not depends upon the
particular problem under discussion.

An example of a quantity which is almost universally considered dimen-
sionless (mass taken as a primary quantity) is atomic weight.t The atomic
weight of hydrogen is 1-:008 whether mass is measured in slugs, kilograms,
or stone. By definition, atomic weight is the mass of an atom divided by
one-twelfth of the mass of an atom of carbon 12.

t The word ‘weight” is an unfortunate precedent. Clearly it should be atomic mass.



