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ACOURSE IN MATHEMATICAL ANALYSIS

Volume I: Foundations and Elementary Real Analysis

The three volumes of A Course in Mathematical Analysis provide a full and
detailed account of all those elements of real and complex analysis that an
undergraduate mathematics student can expect to encounter in the first two
or three years of study. Containing hundreds of exercises, examples and appli-
cations, these books will become an invaluable resource for both students and
instructors.

Volume I focuses on the analysis of real-valued functions of a real variable.
Besides developing the basic theory it describes many applications, including
a chapter on Fourier series. It also includes a Prologue in which the author
introduces the axioms of set theory and uses them to construct the real
number system. Volume II goes on to consider metric and topological spaces,
and functions of several variables. Volume III covers complex analysis and
the theory of measure and integration.

D. J. H. GARLING is Emeritus Reader in Mathematical Analysis at the
University of Cambridge and Fellow of St John’s College, Cambridge. He has
fifty years’ experience of teaching undergraduate students in most areas of
pure mathematics, but particularly in analysis.



Introduction

This book is the first of three volumes of a full and detailed account of those
elements of real and complex analysis that mathematical undergraduates
may expect to meet in the first two years or so of the study of analysis.
This volume is concerned with the analysis of real-valued functions of a real
variable. Volume II considers metric and topological spaces, and functions of
several variables, while Volume III is concerned with complex analysis, and
with the theory of measure and integration.

Mathematical analysis depends in a fundamental way on the properties of
the real numbers, and indeed much of analysis consists of working out their
consequences. It is therefore essential to develop a full understanding of these
properties. There are two ways of doing this. The traditional and appropriate
way is to take the fundamental properties of the real numbers as axioms — the
real numbers form an ordered field in which every non-empty subset which
has an upper bound has a least upper bound — and to develop the theory —
convergence, continuity, differentiation and integration — from these axioms.
This programme is carried out in Part Two. This theory is meant to be used,
and Part Two ends with an extensive collection of applications. The reader
is strongly recommended to follow this tradition, and to begin at
the beginning of Part Two.

It is however right to ask about the foundations on which these axioms,
and the rest of mathematical analysis, are built. These foundations are con-
sidered in the Prologue. In the twentieth century, analysis was placed in
a set-theoretic setting, and it is worth understanding what this involves.
Chapter 1 contains an account of Zermelo—Fraenkel set theory, together
with a brief discussion of the axiom of choice and its variants. The
Zermelo—Fraenkel axioms lead naturally to the construction of the natural
numbers. In Chapter 2 it is shown that there is then a steady progression
through the integers and the rational numbers to the real numbers and the
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xvi Introduction

complex numbers. The problem with the natural numbers, the integers and
the rational numbers is that they are very familiar; this part of the journey
may appear to be spent proving the obvious. The construction of the real
numbers is a quite different matter. There are many possible constructions,
but we describe the first, given by Richard Dedekind. This has great virtue,
since it involves both order and metric properties of the rational numbers and
of the real numbers. The reader is urged to defer a detailed reading of
the Prologue until the occasion demands, for example when it becomes
clear how important the fundamental properties of the real numbers are, or
when it is important to consider carefully the role of induction, recursion and
the axiom of dependent choice.

The text includes plenty of exercises. Some are straightforward, some are
searching, and some contain results needed later. Many concern applications,
and all help develop an understanding of the theory: do them!

I have worked hard to remove errors, but undoubtedly some remain. Cor-
rections and further comments can be found on a web page on my personal
home page at www.dpmms.cam.ac.uk.
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