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Preface

The history of astrophysics has been a series of successful applications of modern
physics to cosmic phenomena. In the 20th century, we saw the success of the applica-
tion of nuclear physics to the understanding of the energy generation of the Sun and
the stars, the synthesis of elements, and the change in nuclear processes as the driving
force for stellar evolution. The application of atomic physics was instrumental in our
understanding of the spectra of stars and gaseous nebulae. The measurements of the
strengths of electronic transitions of elements allow us to determine the abundance
of elements and to test the models of nucleosynthesis.

The discipline of astrochemistry began with the development of millimeter-wave
astronomy in the early 1970s, leading to the detection of rotational transitions of
over 120 molecules. The advent of infrared spectroscopy, in particular from space
missions, has made possible the detection of complex organic molecules through their
stretching and bending vibrational modes. Astrochemistry is not only interesting as
part of the study of the interstellar medium, but also relevant to the question of the
origin of life. Astrobiology is a rapidly growing field, and its importance is reflected
in this book by the inclusion of organic chemistry relevant to astronomy.

The developments in space observations, in particular in the X-ray (ROSAT,
Chandra), ultraviolet ({UE, FUSE), optical (HST), infrared (IRAS, ISO, Spitzer),
and submillimeter (SWAS, Odin) regions, have revolutionarized our understanding of
the interstellar medium. These new techniques have greatly expanded the range of
physical processes that can be studied in the interstellar medium. Interstellar ions,
atoms, molecules, and solid materials can now be studied in the UV, optical, infrared,
and millimeter parts of the electromagnetic spectrum. These capabilities will be
further developed with the launch of Herschel and SOFIA. Students will find the
fundamental materials in this book useful in the interpretation of data from these
missions.

Although this book is called the “Physics and Chemistry of the Interstellar Me-
dium” and is primarily written for researchers and students involved in ISM research,
many of the basic materials are applicable to problems in extragalactic astronomy. In
the past, extragalactic astronomers derived most of their information from photome-
try and spectroscopy of a few emission lines, and it was thought that just some basic
understanding of stellar colors and recombination line theory would be sufficient.
After all, the spectra of normal galaxies are just the superposition of starlight and
active galaxies and quasars are too far away to exhibit many emission lines. How-
ever, as the power of telescopes increases, physical processes that previously were
observable only in our own galaxy will be observable in external galaxies. For ex-
ample, with infrared and submm observations, dust continuum emissions are now
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commonly observed in galaxies. The lessons that we have learned in how to interpret
spectra of dust clouds in the ISM are therefore extremely valuable. With modern large
optical telescopes, many atomic lines in the ultraviolet can now be detected in distant
galaxies as they are being redshifted into the visible region. The conditions under
which intercombination lines and collisionally excited lines arise are now relevant.
The construction of powerful mm arrays such as ALMA will make possible the detec-
tion of many molecular species in external galaxies. The greatly improved sensitivity
of Spitzer over ISO means that many of the infrared lines previously seen only in the
ISM are detectable in galaxies.

Goals and Philosophy

This book is based on class notes that I have developed over a period of 20 years
teaching a two-semester course in advanced astrophysics for senior undergraduate and
beginning graduate students at the University of Calgary. The intended readership is
a physics student who is familiar with basic physics topics such as electromagnetism,
atomic structures, and quantum mechanics, as well as a chemistry background at
the first-year university level. The increasing availability of computer codes to treat
various problems (e.g., CLOUDY for photoioinization, Raymond-Smith for X-ray
spectra, DUSTCD for dust continuum transfer, etc.) has resulted in many students
treating these tools as black boxes without understanding the underlying principles.
The goal of the book is to prepare the readers with a fundamental background in
physical and chemical processes and to allow them to properly interpret modern
observations. In order to help achieve this goal, I have included many sample spectra
and images from actual observations to illustrate the theoretical concepts.

By sticking with fundamental principles and avoiding phenomenological descrip-
tions, [ hope that the material in this book will stay relevant for a long time, and not
be made obsolete by changing models and fashions.

In undergraduate studies, students try to solve problems whose solutions they
know exist. In graduate studies, students are given a problem which has not been
solved before and try to solve it. As research scientists, we identify a problem,
formulate it in mathematical terms, and then solve them. When confronted with a
physical problem, we have to isolate the critical variables, the physical processes
involved, and the relevant equations to use. The key for a successful scientist is to
think physically, and not to be bogged down by mathematical details. In this book, I
try to emphasize these principles.

Instead of writing down the most general equations and seeking the most general
solutions—the common approach taken by many physics textbooks—I deliberately
limit all equations to the one-dimensional case to minimize mathematical complexity,
and to obtain particular solutions for the simplest case. By this approach, I try to
highlight the physical meanings of each term, which may otherwise be obscured by
the mathematics. T hope this will prevent students from mechanically grinding through
equations without realizing their meaning.

Some readers may notice that many topics are related to research that I have
done over the years. Since I am obviously limited and biased by my own background, I
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apologize to readers who think some topics are neglected or not covered as extensively
as they could be. For example, I have left out magnetic fields, turbulence, and high-
energy phenomena such as relativity and cosmic rays.
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1

The Interstellar Medium

The existence of interstellar matter was first inferred by the absence of stars in
certain dark patches of the Milky Way. The 1927 photographic atlas of the Milky
Way by E. E. Barnard included many dark clouds silhouetted against the background
starlight. Such dark patches are not due to a lack of stars in these regions but are the
result of starlight being blocked from view by intervening interstellar dust absorption.
Interstellar reddening, in which the colors of stars are modified as a result of selective
extinction of starlight by dust in the interstellar medium (ISM), provides further proof
for the presence of interstellar matter.

Interstellar matter can also be directly observed. The catalogue of nebulous
objects compiled by Messier in 1784 contained two kinds of nebulae: those that are
made up of stars (e.g., the Andromeda nebula), which we now call galaxies or star
clusters; and gaseous objects (such as the Orion nebula), which are objects in the
ISM. Gaseous nebulae can be just regions of higher matter concentration in the ISM
(e.g., H 11 regions), or represent material recently ejected from stars (e.g., planetary
nebulae and supernova remnants).

How do we define interstellar matter? Stars are gaseous objects bound together
by gravitational self-attraction (Section 15.2). So at the fundamental level, stars are
not different from interstellar gaseous nebulae. However, the gravitational forces
inside stars are sufficiently strong that stars take on well-defined spherical shapes.
The concentration of high densities also provides sufficient opacity for stars to be
seen to have an apparent surface (the photosphere) that allows them to be viewed as
distinct entities. Most importantly, stars are self-luminous with energies generated by
thermonuclear reactions in the interior.

Interstellar clouds, to different degrees, also self-radiate, although not necessarily
at visible wavelengths. Clouds that are self-gravitating can take on well-defined
shapes, but others can be diffuse in appearance and often do not have well-defined
structures. Their low densities also imply that they are usually transparent (optically
thin, Section 2.6) at some spectral regions, unlike stars, which are opaque at all
wavelengths.

Most stars (including the Sun) have stellar winds (Chapter 15) that eventu-
ally merge with the ISM, which, to a certain extent, is an extension of the stellar
atmosphere. This connection is more obvious for planetary nebulae, nova shells,
Wolf-Rayet star nebulae, and supernova remnants. Therefore, we should not view
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interstellar matter in isolation, but instead it should be studied in the context of a
system in which stars play a crucial role.

What is the origin of interstellar matter? While galaxies contained a significant
amount of gaseous material when they formed, most of the primordial gas has been
used up to form stars. The material in the present ISM has mostly been replenished
from stellar ejecta such as stellar winds or supernovae. The ISM therefore can be
considered as the result of mixing of ejecta from different generations of stars, and
the shaping and processing by subsequent radiative and mechanical events.

1.1 States of Matter in the ISM

Because of high temperatures, matter inside stars is primarily in an ionized state,
where atoms have lost one or more of their electrons. The ISM, on the other hand,
has a wide variety of temperature conditions, and almost all states of matter (ionized,
neutral atomic, molecular, and solid state, with the exception of liquid) are present.
Since optical astronomy was the first observational technique to be developed, highly
excited atomic and ionic lines originating from high (~10* K) temperature environ-
ments were the first to be detected (Chapter 5). After the ionized component, the
molecular state was the next to be discovered as the result of molecular electronic
transitions observed in absorption against background stars (Section 7.6). The effect
of stellar reddening (Section 10.1) and the existence of dark clouds also suggested
the presence of absorbing material in a solid form in the ISM. The development of
radio astronomy in the 1950s led to the detection of the A = 21 cm hyperfine transi-
tion of the hydrogen atom (Section 5.4.1) and demonstrated the wide distribution of
atomic hydrogen in the Galaxy. In the late 1960s, radio receivers of higher frequen-
cies became available and the rotational lines of molecules were detected at millimeter
wavelengths (Section 7.4). Vibrational transitions of molecules occur generally in the
near infrared, and vibrational bands of simple molecules were widely observed by
1980 (Section 7.5). The advent of infrared detection technology also led to the dis-
covery of continuous emission from solid-state substances (dust grains) in the ISM
(Section 10.3). The detection of neutral heavy atoms in low temperature environments
is more difficult because the low-lying energy states that are likely to be excited have
small energy separations and the transitions lie in the far infrared or submillimeter
(submm) parts of the electromagnetic spectrum. Demanding technologies, combined
with an opaque Earth atmosphere in this spectral region, are the reasons why the neu-
tral state of many common atomic species (e.g., carbon and oxygen) were detected
only after the deployment of infrared telescopes in high-flying aircraft (Section 5.3).

The opening of all spectral observing windows by the placing of telescopes in
Earth-orbiting spacecraft has allowed a comprehensive study of the ISM. Most elec-
tronic transitions of atoms and ions occur in the ultraviolet and can now be observed
by ultraviolet telescopes (Section 5.1). The diffuse interstellar clouds excited to high
temperature by high-velocity shocks have been detected as a result of their continu-
ous emission in the X-ray region (Chapter 16). The greenhouse gas molecules (e.g.,
H,0, CO,, CHy), which are responsible for the opacity of the Earth’s atmosphere and



1.2 Interactions between Stars and the ISM 3

therefore impossible to observe from ground-based observatories, have been detected
by space-based far-infrared and submm telescopes. As the sensitivities of detecting
instruments continue to improve and the spectral coverage continues to widen, large
complex molecules (many of them organic) have been discovered by infrared and
millimeter observations. The chemical reactions that lead to the formation of such
large molecules will provide invaluable clues to the question of the origin of life.

The studies of the atomic, molecular, and solid-state components of the ISM also
serve as useful probes to the physical conditions of the ISM, giving us measurements
of the density, temperature, and kinematics of interstellar clouds. Some of the molec-
ular and solid-state materials are preserved in primitive solar system objects such as
meteorites and comets. Although most of our knowledge of the ISM is gained through
remote observations, the possibility of physically examining meteorites or interplan-
etary dust in a laboratory provides an alternate avenue for studying the content of
interstellar matter (Section 13.5).

At the beginning of the twenty-first century, we are witnessing the golden age of
interstellar medium research. In this book, we will cover all the constituents of the
ISM, discuss how they can be excited under interstellar conditions, and with what
physical mechanisms they can radiate and be observed with ground-based or space-
based telescopes.

1.2 Interactions between Stars and the ISM

Stars, with thermonuclear burning in their interiors, are the energy source of almost all
the phenomena observed in the interstellar medium. The only other minor contributor
is the cosmic background radiation. Stellar energy is transferred to the ISM in two
ways: radiatively and mechanically. Diluted starlight intercepted by interstellar gas
and dust is responsible for the excitation of interstellar matter above the minimum
excitation provided by the cosmic background 2.7-K radiation. In addition to photons,
stars also eject matter in the form of stellar winds (Sections 15.6 and 15.7), and
occasionally by violent events such as supernova explosions (Section 16.2). Although
neutrinos are also produced by stars, they are believed to pass through the ISM without
much effect because of the small cross section of neutrino—baryon/lepton interaction.

Besides energy exchange, another effect of stellar influence on the ISM is chemi-
cal enrichment. All the heavy elements and much of the helium present in the Universe
today were produced by stellar nucleosynthesis. These heavy elements are deposited
in the ISM by stellar winds and supernovae, thereby gradually enriching the metal
content of the Galaxy.

Our current understanding of single star evolution and nucleosynthesis is sum-
marized in Table 1.1. The different stages of nuclear burning that can occur in a star
are primarily a function of its initial mass. Whether a star can go through to another
phase of nuclear burning is dependent on the end product from the previous phase.
Mass loss on the surface can deplete the envelope, and therefore limit the mass of the
end product, terminating the evolution. The products of nuclear burning in the core are
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Table 1.1

The evolution of single stars and the enrichment of the ISM

Mass range Nuclear processes End product ISM enrichment

M <0.08 Mg no H ignition brown dwarfs —

0.08 < M/Mg < 0.5 H core burning He white dwarfs —
no He ignition

0.5<M/Mg <22 ignite He degenerately C-O white dwarfs He, N, s-process
in the core elements

22 <MMg <~38 ignite He C-O white dwarfs He, C, 3C, 70,
nondegenerately s-process elements

8 < MMy < ~10-12 ignite C neutron stars He
nondegenerately

10-12 < M/Mg < ~ 40

supernovae before

neutron stars or black

0, Ne, Mg, Si, S, Ar,

40 < MM < ~ 100

H depletion in the holes
envelope

Ca, r-process elements

supernovae after WR neutron stars or black 0O, Ne, Mg, Si, S, Ar,

phase holes Ca, r-process elements
O burning after He none 160
exhaustion

brought to the surface through convective processes. These elements are then returned
to the ISM through stellar winds or explosive events.

Because of the initial mass function, stars in the 3rd and 4th rows of Table 1.1 rep-
resent 95% of the evolved stars in the Milky Way Galaxy and are therefore mainly re-
sponsible for the enrichment of the ISM. The nuclear-processed materials are ejected
in the form of a stellar wind during the asymptotic giant branch (AGB) (Section 15.7).
Theoretically, C could be ignited degenerately in the core, but AGB mass loss invari-
ably depletes the H envelope before the core grows to the Chandrasekhar limit, so this
never occurs, at least not in the Milky Way at present epoch. Carbon ignition under
degenerate conditions may occur in an earlier generation of metal-poor stars when
mass loss was less efficient.

For massive stars (stars in rows 5—7 of Table 1.1), a series of elements can be
ignited after C, leading to the formation of an iron (Fe) core. In addition to the
supernova explosion in the end, these stars also enrich the ISM through stellar winds
during the main sequence (O, B supergiants) and Wolf-Rayet phases (Section 15.6).
Therefore the present distribution of elemental abundance reflects the nucleosynthesis
history of previous generations of stars.

The chemical evolution of galaxies is the result of the star formation rate, the
initial mass function, the yield of processed material returned to the ISM, and other
physical processes such as galactic inflows and outflows. It should be emphasized that



