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Preface

The classical tradition of mathematical analysis studies functions, vector
fields, differential equations, etc.. in Euclidean space R". It has become apparent
in recent years that there is great interest in the methods of mathematical analysis
carried out on manifolds, that is, spaces that look like R” in the small. They
have found concrete applications to the fields of physics, engineering, and
economics; possible applications are under investigation in many other areas.

The present book aims at making much of this material available to anyone
who is at the level of a beginning graduate student in mathematics. The first half
of the book requires little more than a good foundation in undergraduate
mathematics. In later chapters we use some integration, Fourier analysis, and
homology theory. At appropriate places, we outline all the theory that we need,
and we list many references. In the Introduction we sketch the history of the
subject and give a detailed description of the individual chapters. A full list of
references is given at the end of the book.

The material presented in this book was first exposed by the author in a
graduate course at the University of Minnesota in 1976—1977. The course was
very successful, attracting both students and faculty from mathematics and the
sciences. I want to thank my listeners and friends for helping me to fix my ideas
on the subjects presented here. I am also grateful for the remarkable typing tal-
ents of Peggy Gendron. As usual, responsibility for accuracy, interest, etc.. lies
entirely with me.
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2 INTRODUCTION

In the Batelle Rencontres [8], a collection of papers dating from 1967. based
on lectures in mathematics and physics, there is a substantial amount of what
we might now call global analysis. More recently, the field has been shown to
be of interest in engineering; for example, the survey article of Brockett [14]
for the Institute of Electrical and Electronics Engineers is deeply involved
with manifolds, vector fields, etc. I think, however, that almost everyone
would agree that it is the catastrophe theory of Thom (e.g., [13, 108]) that
has most caught the imagination of the general public. Surely some of this
theory is controversial, and some of its more flamboyant applications will
have to be reformulated or restrained to conform with the accepted rigor
of science, but I doubt if anyone will deny that there is a certain amount of
new mathematics, with a significant potential for application.

Where, then, is the middle ground of global analysis, and why would I
want to risk writing a book in this young field? The foundation of any rational
view of this field must be the study of smooth manifolds and the maps between
them. Because I want to make this subject accessibie to many people and am
not afraid to do something once and then generalize it later (when there is a
clear advantage in good exposition), I begin this text with a basic discussion
of (finite-dimensional) differentiable manifolds. The first three chapters all
are concerned with that area. I begin with those aspects of this theory that
flow out of the usual advanced calculus, and I carry it through to prove
versions of the Whitney embedding theorem, the theorem of Sard on the
measure of the set of critical values, and finally, the transversality lemma of
Thom. 2
With the foundations set, we proceed to look at the tangent bundle to a
manifold, and more generally the theory of vector bundles (which I treat
fully in the real case over a compact space). I feel that a certain amount of
bundle theory is essential here, but that it would be a perversion of the
general purpose of this text to include a full study of fiber bundles. For this
reason I limit myself as indicated, rather in the spirit of the beautiful book of
Atiyah [4].

This leads up to what may be considered the first topic belonging properly
to global analysis, the general study of differential operators on manifolds.
This text being an introduction, my goal here is to bring the student to where
he or she may begin to learn the Atiyah-Singer index theorem. I make no
attempt to offer any competition to the existing excellent, but rather more
advanced, expositions in that area. It goes without saying that by that point,
I must cover the basic topics of differentiation and integration on manifolds,
including of course the algebra of differential forms, Stokes’ theorem, the
Poincaré lemma, and the basic definition of deRham cohomology. But no
material from algebraic topology is presumed to be known by the reader
up to this place in the book.
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It is my belief that this is the proper place to extend some of our earlier
material on differentiable manifolds to the infinite-dimensional case. To say
something meaningful here would require a certain knowledge of functionat
analysis. We include some short references to the relevant parts of that field.
hoping to guide the reader to appropriate places in the literature. Much of the
earlier material about manifolds, smooth maps, tangent bundles, etc. carries
over without serious difficulty to the more general case of infinite-dimensional
manifolds. We do prove one basic result, which exhibits the function space
of maps between manifolds as an infinite-dimensional manifold. We also
discuss, and prove part of, Kuiper’'s well-known result concerning the
contractability of the infinite-dimensional linear group. But to keep within
the general scope I have in mind here, I must stop short of more recent
developments, such as the work of Kuiper, Eells, Elworthy, and others on
Hilbert manifolds.

The remainder of this text consists of a series of four topics, all closely
related to analysis on manifolds:

(i) Morse theory, the study of smooth functions at critical points;
(11) Lie groups and their actions on manifolds;
(iti) dynamical systems and structural stability;
(iv) a descriptive introduction to singularities and catastrophies.

We aim here for a solid description of the basic résults in these areas. For
example, one needs some basic facts from topology (rational homology
groups, Euler characteristic, etc.) to discuss the Morse inequalities. We
include an outline of this material, along with many references, at the appro-
priate point. In the case of topic (iv) we aim only to describe the general
ideas; we mention the seven elementary catastrophies, but do not prove that
they are exhaustive in the dimensions in question.

No author would be entirely honest if he did not clearly indicate what
relevant material has been deliberately omitted from the book. First of all,
we have stressed the compact case. Much of what we have said about mani-
folds, vector bundles, etc. is not, in fact, limited by that restriction. Unfortu-
nately, the methods of proof in the general cases are frequently much more
involved. Second, we never enter properly into the domain of K-theory, a
topic that is both beautiful and naturally related to the material of this text.
It is unfortunate that K-theory presumes much more algebraic topology
than I felt could be safely assumed as a prerequisite for this text. Third, for
many of the later topics in the book, I strive to give a clear idea of what is
involved in the area rather than give maximal known generality. Examples
of this are the sections on infinite-dimensional manifolds, the discussion of
Lie groups (minimal reference to Lie algebras), and the frequent restriction
to the real case (with at most a remark about the equally important complex
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case). Of course I have tried to give full lists of references, so that a serious
reader will not have too much trouble tracking things down.

The original text was intended to be available to a well-prepared first-year
graduate student. I had to assume a full foundation in basic analysis (still
often taught under the misleading name of “advanced calculus”), linear
algebra, and point-set topology. As I indicated above, I have had to stray
from this at a few points, but I think a serious and patient student can survive
these hurdles. I do not think that the basic material from algebraic topology
(as in the chapter on Morse theory) or the ocassional reference to Lebe: gue

“ measure, initially restricted to a discussion of sets of Lebesgue measure zero,
need be regarded as a major obstacle. Most students who are at the level of
this book are simultaneously learning some of these important topics. On
occassion, some of these additional topics may be taken on faith for a short
period of time to accommodate the contingencies of one’s program. In a
similar way, I have felt free to use the basic existence and uniqueness theo-
rems from differential equations.

[ have decided against a formal list of problems at the end of every section.
I have specifically indicated where good sources of relevant problems may
be found, and have otherwise indicated some projects relevant to the material
at hand. At some places, however, I do state specific problems. Naturally,
working some problems is essential in getting an understanding of the
subject.

On the other side of the coin, mature mathematicians may well find some
interest in portions of this book. For them the basic material will probably
be boring, and it will be necessary to feel their way around to find where new
and interesting material first occurs. I hope that nobody will be angry; it is a
lot easier to skip pages than to fill in material that one does not know. I
will personally feel that I have succeeded if I can bring students, as well as
faculty whose interests lie elsewhere, to the point of understanding collo-
quium lectures in this beautiful field.



CHAPTER

1

Manifolds and Their Maps

The purpose of this chapter is to lay the groundwork for the study of
smooth manifolds and their maps. We begin with their general properties
and then review quickly the important special case of Euclidean spaces. No
political treaty has ever been drawn-up to delineate clearly between advanced
calculus and the elementary theory of manifolds. I shall attempt, toward the
end of this chapter, to give a concise presentation of this borderline material,
hoping to be helpful to some without offending others.

DIFFERENTIABLE MANIFOLDS AND THEIR MAPS

A manifold is a nice topological space that in the small is just like Euclidean
space (a rigorous definition will follow). To do mathematical analysis on
manifolds, one imposes some condition of smoothness or differentiability
concerning the relation of any two nearby pieces, each of which is like
Euclidean space. To assure that the thing does not get too large, one usually
imposes some mild set-theoretic conditions. A typical example would be
the ordinary sphere (the surface of the earth). A nice small region—such as a
polar ice cap—is virtually indistinguishable from a small region in the
plane, while the entire manifold, the sphere, is fundamentally different from
the plane. We shall define a manifold first, and after some examples turn to
differentiable manifolds.
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Definition 1.1 An n-manifold (or manifold of dimension n) is a topological
space M" that satisfies the following:

(a) M" is a Hausdorff space (satisfying the separation axiom T, of
Hausdortl).

(b} If xis a point of M", then there is an open set O = M", x € O, with
O homeomorphic to the Euclidean space R" (R"=R x - -+ x R, n factors).

(¢) M" has a countable basis for its topology: i.e., there is a countable
family of open sets {O,,] such that every open set is a union of some of the
0,s.

Examples 1. The Euclidean spaces R" are trivial examples (take a
single open set 0 = R").

2. Any open set U = R" is clearly an n-dimensional manifold because, as
is easily seen, an open ball of fixed radius about a point in R" is homeomor-
phic to all of R". (Using polar coordinates, the required homeomorphism is
the identity on all angular coordinates and on the radial coordinate can be
chosen to be any homeomorphism from the interval in question to the entire
real numbers, and is easily constructed from functions such as the tangent.)

More generally, if M" is an n-manifold and U < M" is an open subset, then
U is an n-manifold.

3. Let "= {X e R""'d(O, X) = 1}, where d(0,X) means the distance -
from X to the origin Q. This is the standard n-dimensional sphere. If X =
(Kgis oss9 X,+1), then we set

U={XeS" x> -1}, V={XeS|x,, <+1}.

Clearly U and V are a covering of S" by two open sets.
Now, if X € U, let Iy denote the straight line in R"*' through the two
points (0,0, ..., —1) and X. Then clearly [, meets the hyperplane

H, = {XGR"H|X"+1 =1}

at a single point, called ¢(X). Then ¢ is trivially checked to be a homeomor-
phism from U to H,. But the projection onto the first n coordinates yields a
homeomorphism between H, and R". Thus U is homeomorphic to R".

Similarly, V is homeomorphic to R". S" is obviously a compact Hausdorff
space with a countable basis; thus it is an n-manifold

4. If M" and N* are manifolds of dimension n and k, respectively, then
M" x N¥ is easily seen to be a manifold of dimension n + k. The torus
S' x S' is an easy example.

5. Let Gl(n:R) be the group of n x n matrices over the real numbers with
nonvanishing determinant. It is a topological space because it is a subspace
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of all n x n matrices that is topologized exactly as Euclidean space of
dimension n®. Alternatively, we may define the norm of a matrix (a;)),

“(a.'j)ll = Z (aij)z,

i.j
and then a metric by
d((aij)s(hij)) = ”(aij - bij)“-
If we set
D= {(aij)ldet(aij) =0},

then Gl(n;R) is clearly the complement of D in the set of all n x n matrices.
But D is trivially checked to be closed, so Gl(n, R) is open and hence a mani-
fold of dimension n?.

This should suffice to show that the collection of manifolds is very sub-
stantial; we shall meet many other examples as we proceed through this
book. Before turning to differentiable manifolds, it is important that we
look for a moment at a few technical points connected with the definition
of a manifold.

(1) All of the hypotheses made in the definition of an n-manifold are
independent of one another. For example, condition (b) in Definition 1.1
does not imply that M" is Hausdorff. Consider the following space in the
form of a letter Y -

X,
XZ.\

where the left branch is an open interval and the two right branches are
half open and contain their left-hand endpoints. The topology around every
point other than x,; and x, is the usual topology of the real line. An open
neighborhood of x; consists of the union of a half-open interval in the upper-
right segment with x, as leftmost point and an open subset of the left branch
consisting of all points in that branch that are to the right of a given point.
Similarly, an open neighborhood of x, is defined using points of the lower-
right segment. In particular, any open neighborhood of either x, or x, must
contain all points to the right of some given point in the left-hand branch.

This topological space has the property that every point has an open
neighborhood homeomorphic to R!, but the two points x, and x, do not
have disjoint open neighborhoods, so that it is not a Hausdorff space.

There are classic examples of “manifolds” for which condition (c) fails,
the so-called long line, for example (see [5]).
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(2) An n-manifold in the sense of Definition 1.1 is ocasionally called a
topological manifold, to distinguish it, for example, from a differentiable
manifold (Definition 1.2).

(3) An n-manifold M" enjoys various point-set theoretic properties in a
somewhat automatic fashion. For example,

(i) A manifold M" is locally compact. If x € M", choose an open neigh-
borhood O of x that is homeomorphic to R". Around the point x in O we
may then select an open ball of finite radius (regarding O as R"). The closure
of such an open ball 1s, of course, compact.

(i) M"is separable (that is, it has a countable dense subset). This follows
at once from Definition 1.1c.

(i1i) M" is regular; tha is, if x and. C are a point and a closed subset of
M" with x ¢ C, then x and C are contaired in disjoint open sets. For this
it suffices to handle the case where both - and C are contained in an open
neighborhood of x homeomorphic to R". This is trivial, for R" is a metric
space.

(iv) With slightly more work, M" may be shown to be a normal space.

(v) Combining Definition 1.1¢ with (iv) or (iii) above and using the
Urysohn metrization theorem, we see that an n-manifold in the sense of
Definition 1.1 is always a metric space. This will be greatly strengthened in
the case of a smooth manifold when we construct a Riemann metric. Further-
more, we shall prove, in the case of a com»act smooth manifold, that M" is
always homeomorphic to a subspace of 13*""!. This embedding theorem,
which may also be established without compactness, trivially implies
metrization.

(4) The number n. the dimension of an r-manifold, is in fact an invariant.
That is, if two manifolds are homeomorphic, then they have the same
dimension. This result is significantly deeper than one might guess on first
looking at it. Even when the manifolds are restricted to be simple Euclidean
spaces, it i1s nontrivial. The assertion that R" and R™ can only be homeo-
morphic when n = m is the famous theorem on invariance of dimension
from algebraic topology. The general fact that the dimension of a manifold
is an invariant follows by similar methods of algebraic topology (see, e.g.,
[25, 33])).

In this context, we might also mention another relevant theorem from
algebraic topology, the invariance of domain. This asserts that if U, and U,
are homeomorphic subsets of a given manifold M", and U, is open in M",
then so is U,. (Note that the homeomorphism between these subsets is not
assumed to extend to a homeomorphism of the entire manifold to itself, in
which case the theorem would, of course, be trivial.)
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On the other hand, for differentiable manifolds (soon to be defined) the
fact that dimension is an invariant is rather trivial, and we shall prove it
later in this chapter (Corollary 1.5).

(5) Naturally, a manifold need not be connected. For example, Gl(n. R)
has two connected components, corresponding to the positive and the nega-
tive determinants. But if a manifold is connected, it is automatically path-
wise connected. For let x, be a given point in the manifold M" and let M|,
be the set of points that may be connected to x, by a continuous path. Using
the fact that the manifold is locally like Euclidean space, it is easy to see that
M is both open and closed. Since M" is connected, we must have M, = M",
proving that M" is pathwise connected.

Our principal interest in this text will be manifolds with some differen-
tiability or smoothness. This can be viewed in two ways. First, any point lies
in an open set that is homeomorphic to R". If more than one such open set
overlap or mesh badly, the change of coordinates obtained by viewing a
given point in two different open sets might be a bad sort of function. But if
the open cover by sets kciueomorphic to I™ can be chosen nicely, then the
possible change of coordinates arising from viewing a given point as lying
in two overlapping open sets might always be a differentiable function from
a subset of R" to another. This is the first (and most common) way of getting
at the notion of a differentiable manifold.

A second possible approach is in terms of functions. Given a function
J:M" > R and a point x € M" contained .in an open set O that is homeo-
morphic to R", we might wish to call f differentiable at x, provided [ re-
stricted to O is differentiable at x, in terms of the usual notion of differen-
tiability of functions defined on Euclidean space. Unfortunately, this will not
be an intrinsic property of the function f and the point x, but will depend
on the choice of open set O. If there is a cover by suitable open sets, each
homeomorphic to R”, such that the question of whether a function is dif-
ferentiable at any given point x has a consistent answer, not dependent on
the choice of a particular open set, then the manifold clearly ought to be
thought of as differentiable. This is an alternative and equivalent approach,
first exposed in [20], that we shall also sketch.

Here then is the official definition.

Definition 1.2 A manifold is called smooth (or infinitely differentiable,
or sometimes just differentiable) if there is a family of open sets {0,} that
cover the manifold, each of which is homeomorphic to R" by a given
homeomorphism

¢,: 0, - R
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such that, whenever O, n O, is nonempty, the composite map

$p10.n0p) ! 6.0, .
G0, N 0,) 2219209 1, g~ 0, 4000 R
whose domain is visibly an open subset of R", has continuous partial deriva-
tives of all orders.
The pair (0, ¢,) is often called a chart or a coordinate chart.

Remarks (1) Our previous examples furnish many examples of differ~
entiable or smooth manifolds. R" and all its open subsets are obviously
smooth manifolds. One may easily check that §”, with the cover by two open
sets given above, is a smooth manifold.

(2) Obviously, a smooth or differentiable manifold is a manifold, but it
is remarkable that the reverse assertion is false. Kervaire [63], and later
Smale and others, have shown that a compact manifold need not be dif-
ferentiable. Kervaire constructs a 10-dimensional manifold and shows that
it 1s not possible to select an open cover by sets meeting the condition of
Definition 1.2. (Actually, the proof is rather indirect and depends on con-
siderable algebraic topology.) _

(3) Given a topological manifold, Remark (2) shows that there is an
existence problem, the question whether one can find a differentiable struc-
ture on that manifold. Precisely, one may ask whether there is a smooth
manifold that is homeomorphic to the original manifold. Similarly, there is
a uniqueness problem, which we shall formulate precisely below. In a very
famous paper, Milnor [76] has shown that the 7-dimensional sphere has a
plurality of differentiable structures.

(4) Occasionally one needs to study various degrees of differentiability.
If we require that the maps in Definition 1.2 have continuous partial deriva-
tives of all orders less than or equal to some nonnegative integer k, then we
say that the manifold is C¥ or differentiable of class k. In this terminology
a smooth manifold 1s a C* manifold. while an ordinary or topological
manifold (Definition 1.1) is a C° manifold. A key theorem of Whitney [116]
asserts that if a manifold has a C* differentiable structure —that is, a cover
by coordinate charts such that the maps in Definition 1.2, (¢,|0, N O))
(¢3|0, 0y, have continuous partials of order less than or equal to k
(with k > 0)—then the manifold has a compatible C* differentiable struc-
ture, that is, new charts may be found to make it C”. It is for that reason that
I deemphasize the various degrees of differentiability and focus primarily on
the smooth or C* case.

(5) There is an undue amount of emphasis in Definition 1.2 on the choice
of the open cover of the manifold. After we consider mappings between
smooth manifolds, we will be able to introduce a natural notion of equiva-
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lence between manifolds, and then we shall know when manifolds are
equivalent. regardless of these covers.

Definition 1.3 Let M" and N* be smooth manifolds and f: M" — N¥be a
continuous map. Then [ is called smooth (or on occasion just differentiable)
if for every x € M" and every pair of coordinate charts ¢,: 0, — R", with
x€0,,and y;: Uy - R*, with f(x) € Uy, on these manifolds, the composite
mapping Y, > f - ¢, ' has continuous partial derivatives of all orders at the
point ¢,(x).

Remarks (1) The mapping ;- f = ¢, ' is easily seen to be defined on
an open neighborhood of ¢,(x), so it makes sense to talk about partial de-
rivatives. In addition, one easily checks that this is independent of coordinate
charts.

(2) In Definition 1.3, if we require that there be continuous partial de-
rivatives of orders less than or equal to some nonnegative integer k, then
the map f would be called C*. As before, smooth 1s then the same as C*.

(3) The intuitive content of this definition is that we use the coordinate
chart3 to transfer the notion from manifolds to the easily understood notion
in Euclidean spaces.

Before looking into difftomorphisms, submanifolds, etc., I would like to
mention that there is one further type of manifold, which one might en-
counter in the literature. This is an analytic (or, rarely, C) manifold. To
define such manifolds, one requires that the maps in Definition 1.2

‘d)zloz a 0[]) . (d’ﬁloz N Oﬂ)_l

be given by convergent power series in n variables in a neighborhood of any
point of their domains.

Similarly, we have an analytic map between analytic manifolds whenever
the map Y, - f = ¢, ' is always represented by convergent power series
(k series, each in n variables) in a neighborhood of any such point ¢,(x).

It is a generally accepted notion that a map between two mathematical
objects is an isomorphism or equivalence if there is a map going in the reverse
direction that when composed with the original map-—on either side—
yields the identity map. This is also the idea behind a diffeomorphism.

Definition 1.4 Two smo»th manifolds M| and M’ are diffeomorphic (or
occasionally equivalent) if there are smooth maps

fiMy - M and g: M5 - M



