B

e

=== =
= -

——
—_—

s
e

e e
YR e e e




GENERALIZED FUNCTIONS,
VOLUME 5

INTEGRAL GEOMETRY
AND REPRESENTATION THEORY

I. M. GEL'FAND

. SRS
TRANSEATRD BY PUGENE SALETAN

AMS CHELSEA PUBLISHING
American Mathematical Society * Providence, Rhode Island




2010 Mathematics Subject Classification. Primary 22Exx.

For additional information and updates on this book, visit
www.ams.org/bookpages/chel-381

Library of Congress Cataloging-in-Publication Data

Names: Gel'fand, I. M. (Izrail’ Moiseevich) | Shilov, G. E. (Georgii Evgen’evich)

Title: Generalized functions / I. M. Gel'fand, G. E. Shilov ; translated by Eugene Saletan.

Other titles: Obobshchennye funktsii. English

Description: [2016 edition]. | Providence, Rhode Island : American Mathematical Society : AMS
Chelsea Publishing, 2016- | Originally published in Russian in 1958. | Originally published in
English as 5 volume set: New York : Academic Press, 1964-[1968]. | Includes bibliographical
references and index.

Identifiers: LCCN 2015040021 | ISBN 9781470426583 (v. 1 : alk. paper) | ISBN 9781470426590
(v.2) | ISBN 9781470426613 (v. 3) | ISBN 9781470426620 (v. 4) | ISBN 9781470426637 (v. 5)

Subjects: LCSH: Theory of distributions (Functional analysis) | AMS: Functional analysis — Dis-
tributions, generalized functions, distribution spaces — Distributions, generalized functions,
distribution spaces. msc

Classification: LCC QA331.G373 2016 | DDC 515.7-dc23 LC record available at http://lccn.
loc.gov /2015040021

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting
for them, are permitted to make fair use of the material, such as to copy select pages for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Permissions to reuse
portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink®
service. For more information, please visit: http://wuw.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.

Excluded from these provisions is material for which the author holds copyright. In such cases,
requests for permission to reuse or reprint material should be addressed directly to the author(s).
Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the
first page of each article within proceedings volumes.

(© 1966 held by the American Mathematical Society. All rights reserved.
Reprinted by the American Mathematical Society, 2016
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10987654321 21201918 17 16



GENERALIZED FUNCTIONS,
VOLUME 5

INTEGRAL GEOMETRY
AND REPRESENTATION THEORY



oA e, B SE #EPDFIE U 0] : www. ertongbook. com



Translator’s Note

This English translation of the fifth volume of Professor Gel’fand’s
series on generalized functions contains all the material of the Russian
fifth volume with the exception of its appendix. This appendix, in which
generalized functions of a complex variable are discussed, appears as
Appendix B of the first volume in the English translation.

The text of the translation does not deviate significantly from the
Russian, although some minor typographical errors have been corrected
and some equations have been renumbered. The symbol  # has been
used to indicate the end of the Remarks (set in small type in the Russian).

The subjects discussed in this book are often of interest both to
mathematicians and to physicists, and each discipline has its own ter-
minology. An attempt has been made to keep to the mathematicians’
terminology, but some confusion is inevitable. I will appreciate suggestions
for improvement in terminology and notation.

I wish to express my gratitude to the members of the Department of
Mathematics at Northeastern University who have helped with the
terminology. I am especially grateful to Professors Flavio Reis and
Robert Bonic. I also wish to thank Dr. Eric H. Roffman and Professor
E. C. G. Sudershan, who read the manuscript and galley proof and

offered many helpful suggestions.
E.J.S.






Foreword

Originally the material in this book had been intended for some chapters
of Volume 4, but it was later decided to devote a separate volume to
the theory of representations. This separation was based on a suggestion
by G. F. Rybkin, to whom the authors express their deep gratitude, for
it is in excellent accord with the aims of the entire undertaking.

The theory of representations is a good example of the use of algebraic
and geometric methods in functional analysis, in which transformations
are performed not on the points of a space, but on the functions defined
on it.

As we proceeded in our study of representation theory, we began to
recognize that this theory is based on what we shall call integral geometry
[see Gel'fand and Graev(9)]. Essentially, we shall understand integral
geometry to involve the transition from functions defined on one set of
geometrical objects (for instance on the points of some linear surface)
to functions defined on some other set (for instance on the lines generating
this surface).* Stated in this way, integral geometry is of the same general
nature as classical geometry (Pliicker, Klein, and others), in which new
homogeneous spaces are formed out of elements taken from an originally
given space. In integral geometry, however, we shall deal with such
problems in what perhaps may be called their modern aspect: the transition
from one space to the other shall be accomplished with the simultaneous
transformation of the functions defined on it. This may be compared to
the difference between classical and quantum mechanics: the trans-
formations in classical mechanics are point transformations, while those
of quantum mechanics are transformations in function space. (See the
introduction to Chapter II.)

We have presumed to devote an entire volume to these elegant special
problems in order to emphasize particularly this modern point of view
relating geometry to functional analysis, as well as to point out the
algebraic-geometric approach to functional analysis, an approach still in
its earliest development.

In this book we shall not attempt a complete description of the theory
of representations, for that would probably take several such volumes.
Instead we shall restrict ourselves to the group of two-dimensional

* The term ““integral geometry” as we use it here differs from its traditional meaning
in which it involves calculating invariant measures on homogeneous spaces.

vii
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complex matrices of determinant one, which is of interest for many
reasons. First, it is the simplest noncommutative and noncompact group.
Further, it is the transformation group of many important spaces. In
particular, it is locally isomorphic to the group of Lobachevskian motions,
to the group of linear-fractional transformations of the complex plane,
and several others. Finally, it is important in physics, for it is locally
isomorphic to the proper Lorentz group.

The method we use in this book to develop the representation theory
is not the only one possible. We have chosen the most natural approach,
one based on the theory of generalized functions and making use of the
excellent work of Bruhat(4). In this approach many of the phenomena of
representation theory, in particular the relation between finite and infinite
dimensional representations, become somewhat easier to understand.

This volume can be read almost independently of the previous ones.
We assume only a knowledge of Chapters I and II and some of Chapter I1I
of Volume 1, as well as their extension to the complex domain as discussed
in Appendix B of that volume. The authors apologize beforehand for
the incompleteness of the present volume. We hope that its underlying
point of view will nevertheless be useful for those who are interested in
new developments in functional analysis. The book is written to be read
in one of two possible ways. Readers interested only in integral geometry
may study Chapters I, I, and V, which are concerned only with integral
geometry and are independent of the rest of the book. On the other hand
readers interested only in representation theory can start with Chapter III,
although an outline of the problems discussed is already given in Section 2
of Chapter II.

Chapters I and II were written by Gel'fand and Graev. The rest of
the book was written by the three authors together. It contains a rewritten
and expanded version of chapters originally written for Volume 4 by
Gel’'fand and Vilenkin (Chapters III and IV of this volume).

The authors express their deep gratitude to A. A. Kirillov and F. V.
Shirokov, who read over the manuscript and made many helpful observa-
tions. They are especially grateful to L. I. Kopeykina whose help in
the final stages of the manuscript greatly accelerated the publication of
the book, and to S. A. Vilenkina for important help in the manuscript
stage. '

I. M. GEL’FAND
M. I. GRAEV
1962 N. YA. VILENKIN
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