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Preface

Measurable dynamics has traditionally referred to ergodic theory, which is in some sense a
sister topic to dynamical systems and chaos theory. However, the topic has until recently
been a highly theoretical mathematical topic which is generally less obvious to those prac-
titioners in applied areas, who may not find obvious links to practical, real-world problems.
During the past decade, facilitated by the advent of high-speed computers, it has become
practical to represent the notion of a transfer operator discretely but to high resolution
thanks to rapidly developing algorithms and new numerical methods designed for the pur-
pose. An early book on this general topic is Cell-to-Cell Mapping: A Method of Global
Analysis for Nonlinear Systems [167] from 1987.! A tremendous amount of progress and
sophistication has come to the empirical perspective since then.

Rather than discussing the behaviors of complex dynamical systems in terms of fol-
lowing the fate of single trajectories, it is now possible to empirically discuss global ques-
tions in terms of evolution of density. Now complementary to the traditional geometric
methods of dynamical systems transport study, particularly by stable and unstable man-
ifold structure and bifurcation analysis, we can analyze transport activity and evolution
by matrix representation of the Frobenius—Perron transfer operator. While the traditional
methods allow for an analytic approach, when they work, the new and fast-developing com-
putational tools discussed here allow for detailed analysis of real-world problems that are
simply beyond the reach of traditional methods. Here we will draw connections between
the new methods of transport analysis based on transfer operators and the more traditional
methods. The goal of this book is not to become a presentation of the general topic of
dynamical systems, as there are already several excellent textbooks that achieve this goal
in a manner better than we can hope. We will bring together several areas, as we will draw
connections between topological dynamics, symbolic dynamics, and information theory
to show that they are also highly relevant to the Ulam—Galerkin representations. In these
parts of the discussion, we will compare and contrast notions from topological dynamics
to measurable dynamics, the latter being the first topic of this book. That is, if measurable
dynamics means a discussion of a dynamical system in consideration of how much, how
big, and other notions that require measure structure to discuss transport rates, topological
dynamics can be considered as a parallel topic of study that asks similar questions in the
absence of a measure that begets scale. As such, the mechanism and geometry of trans-
port are more the focus. Therefore, including a discussion of topological dynamics in our
primary discussion here on measurable dynamics should be considered complementary.

I'Recent terminology has come to call these “set oriented” methods.

Xi



Xii Preface

There are several excellent previous related texts on mathematical aspects of trans-
fer operators which we wish to recommend as possible supplements. In particular, La-
sota and Mackay [198] give a highly regarded discussion of the theoretical perspective of
Frobenius—Perron operators in dynamical systems, whose material we overlap in as far as
we need these elements for the computational discussion here. Boyarsky and Gora [50] also
give a sharp presentation of an ensembles density perspective in dynamical systems, but
more specialized for one-dimensional maps, and some of the material and proofs therein
are difficult to find elsewhere. Of course the book by Baladi [11] is important in that it
gives a thoroughly rigorous presentation of transfer operators, including a unique perspec-
tive. We recommend highly the book by Zhou and Ding, [324], which covers a great deal
of theoretical information complementary to the work discussed in this book, including
Ulam’s method and piecewise constant approximations of invariant density, piecewise lin-
ear Markov models, and especially analysis of convergence. Also an in-depth study can
be found concerning connections of the theory of Frobenius—Perron operators and the ad-
joint Koopman operator, as well as useful background in measure theory and functional
analysis. The book by McCauley [215] includes a useful perspective regarding what is
becoming a modern perspective on computational insight into behaviors of dynamical sys-
tems, especially experimentally observed dynamical systems. That is, finite realizations of
chaotic data can give a great deal of insight. This is a major theme which we also develop
here toward the perspective that a finite time sample of a dynamical system is not just an
estimate of the long time behavior, as suggested perhaps by the traditional perspective, but
in fact finite time samples are most useful in their own right toward understanding finite
time behavior of a dynamical system. After all, any practical, real-world observation of a
dynamical system can be argued to exist only during a time window which cannot possibly
be infinite in duration.

There are many excellent textbooks on the general theory of dynamical systems,
clearly including Robinson [268], Guckenheimer and Holmes [146], Devaney [95], Alli-
good, Sauer, and Yorke [2], Strogatz [301], Perko [251], Meiss [218], Ott [244], Arnold [4],
Wiggins [316], and Melo and van Strein [89], to name a few. Each of these has been very
popular and successful, and each is particularly strong in special aspects of dynamical sys-
tems as well as broad presentation. We cannot and should not hope to repeat these works
in this presentation, but we do give what we hope is enough background of the general
dynamical systems theory in order that this work can be somewhat self-contained for the
nonspecialist. Therefore, there is some overlap with other texts insofar as background in-
formation on the general theory is given, and we encourage the reader to investigate further
in some of the other cited texts for more depth and other perspectives. More to the point of
the central theme of this textbook, the review article by Dellnitz and Junge [87] and then
later the Ph.D. thesis by Padberg [247] (advised by Dellnitz) both give excellent presen-
tations of a more computationally based perspective of measurable dynamical systems in
common with the present text, and we highly recommend them. A summary of the German
school’s approach to the empirical study of dynamical systems can be found in [112], and
[82]. Also, we recommend the review by Froyland [121]. Finally, we highly recommend
the book by Hsu [167], and see also [166], which is an early and less often cited work in
the current literature, as we rarely see “cell-to-cell mappings” cited lately. While lacking
the transfer oriented formalism behind the analysis, this cell-to-cell mapping paradigm is
clearly a precursor to the computational methods which are now commonly called set ori-
ented methods. Also, we include a discussion and contrast to the early ideas by Ulam [307]
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called the Ulam method. Here we hope to give a useful broad presentation in a manner that
includes some necessary background to allow a sophisticated but otherwise not specialized
student or researcher to dive into this topic.

Acknowledgments. Erik Bollt would like to thank the several students and col-
leagues for discussions and cooperation that have greatly influenced the evolution of his
perspective on these topics over several years, and who have made this work so much more
enjoyable as a shared activity. He would also like to thank the National Science Founda-
tion and the Office of Naval Research and the Army Research Office, who have supported
several aspects of this work over the recent decade.
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Chapter 1

Dynamical Systems,
Ensembles, and Transfer
Operators

1.1 Ergodic Preamble

In this chapter, we present the heuristic arguments leading to the Frobenius—Perron opera-
tor, which we will restate with more mathematical rigor in the next chapter. This chapter
is meant to serve as a motivating preamble, leading to the technical language in the next
chapter. As such, this material is a quick start guide so that the more detailed discussion
can be followed with more motivation. It also provides enough background so that the
techniques in subsequent chapters can be understood without necessarily reading all of the
mathematical theory in the middle chapters.

In terms of practical application, the field of measurable dynamics has been hidden
in a forest of formal language of pure mathematics that may seem impenetrable to the
applied scientist. This language may be quite necessary for mathematical proof of the
methods in the field of ergodic theory. However, the proofs often require restricting the
range of problems quite dramatically, whereas the utility may extend quite further. In
reality, the basic tools one needs to begin practice of measurable dynamics by transfer
operator methods are surprisingly simple, while still allowing useful studies of transport
mechanisms in a wide array of real-world dynamical systems. It is our primary goal to bring
out the simplicity of the field for practitioners. We will attempt to highlight the language
necessary to speak properly in terms necessary to prove convergence, invariance, steady
state, and several of the other issues rooted in the language of ergodic theory. But above
all, we wish to leave a spine of simple techniques available to practitioners from outside
the field of mathematics. We hope this book will be useful to those experimentalists with
real questions coming from real data, and to any students interested in such issues.

Our discussion here may be described as a contrast between the Lagrangian perspec-
tive of following orbits of single initial conditions and the Eulerian perspective associated
with the corresponding dynamical system of the transfer operator which describes the evo-
lution of measurable ensembles of initial conditions while focusing at a location. This leads
to issues traditionally affiliated with ergodic theory, a field which has important practical
implications in the applied problems of transport study that are of interest here. Thus we
hope the reader will agree that both perspectives allow important information to be derived
from a dynamical system. In particular, the transfer operator approach will allow us to
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discuss
e exploring global dynamics and characterization of the global attractors,
e estimating invariant manifolds,

e partitioning the phase space into invariant regions, almost invariant regions, and co-
herent sets,

e rates of transport between these partitioned regions,
e decay of correlation,
e associated information theoretic descriptions.

As we will discuss throughout this book, the question of transport can be boiled
down to a question of walks in graphs, stochastic matrices, Markov chains, graph parti-
tioning questions, and matrix analysis, together with Galerkin’s methods for discussing
the approximation. We leave this section with a picture in Fig. 1.1, which in some sense
highlights so many of the techniques in the book. We will refer back to this figure often
throughout this text. For now, we just note that the figure is an approximation of the ac-
tion on the phase space of a Henon mapping as the action of a directed graph. The Henon

2
Xn+41 = Yn+1 —dAX,,
Y1 =Dbxp, (1.1)

for parameter values a = 1.4, b = 0.3, is frequently used as a research tool and as a ped-
agogical example of a smooth chaotic mapping in the plane. It is a diffeomorphism that
highlights many issues of chaos and chaotic attractors in more than one dimension. Such
mappings are not only interesting in their own right, but they also offer a step toward un-
derstanding differential equations by Poincaré section mappings.

1.2 The Ensemble Perspective

The dynamical systems point of view is generally Lagrangian, meaning that we focus on
following the fate of trajectories corresponding to the evolution of a single initial condition.
Such is the perspective of an ODE, Eq. (2.1), as well as a map, Eq. (2.7). Here we contrast
the Lagrangian perspective of following single initial conditions to the Eulerian perspective
rooted in following measurable ensembles of initial conditions, based on the associated dy-
namical system of transfer operators and leading to ergodic theory. We are most interested
here in the transfer operator approach in that it may shed light on certain applied problems
to which we have already alluded and we will detail.

Example 1.1 (following initial conditions, the logistic map). The logistic map,
X1 = L(xp) =4x,(1 —x,), (1.2)

is a model of resource limited growth in a population system. The logistic map is an
extremely popular model of chaos, partly for pedagogical reasons of simplicity of analysis,



