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PREFACE

An apprentice carpenter may want only a hammer and a saw, but a master
craftsman employs many precision tools. Computer programming likewise re-
quires reliable tools to cope with the complexity of real applications. This book
treats structured problem solving, data abstraction, and the comparative study
of algorithms as fundamental tools of program design. These tools are applied
to develop both data structures and software engineering principles.

The goal of programming is the construction of programs that are clear,
complete, and functional. Many students, however, find difficulty in translating
abstract ideas into practice. This book, therefore, takes special care in the formu-
lation of ideas into algorithms and in the refinement of algorithms into concrete
programs that can be applied to practical problems. The process of data speci-
fication and abstraction, similarly, comes before the selection of data structures
and their implementations.

I believe in progressing from the concrete to the abstract, in the careful de-
velopment of motivating examples, followed by the presentation of ideas in a
more general form. At an early stage of their careers most students need rein-
forcement from seeing the immediate application of the ideas that they study,
and they require the practice of writing and running programs to illustrate each
important concept that they learn. This book therefore contains many samples,
both short procedures and complete programs of substantial length. The exer-
cises and programming projects, moreover, constitute an indispensable part of
this book. Many of these are immediate applications of the topic under study,
often requesting that programs be written and run, so that algorithms may be
tested and compared. Some are larger projects, and a few are suitable for use by
a group of several students working together.
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Synopsis

Part I:
Programming
Principles

Part II1:
Linear Data
Structures

Part I11:
Algorithms and
their Analysis

The reader of this book should have some experience in elementary Pascal pro-
gramming, experience typical of a one-term introductory programming course.
Part I summarizes many of the important principles of writing good programs
and reviews some features of Pascal from an advanced point of view. Chapters 1
and 2 take, as an example, the problem of calculating and printing the calendar
of any given year. In the context of this example, Chapter 1 reviews methods for
problem solving and algorithm development, emphasizes the importance of ex-
act specifications for subprograms, and illustrates the use of preconditions and
postconditions to help ensure algorithm correctness. Chapter 2 continues the
study of program development with questions of style, coding, debugging, and
testing. Chapter 3 takes a fresh look at four structures provided by Pascal for
data encapsulation: arrays, records, sets, and files. Its aim is not only to sum-
marize and illustrate the syntax of these structures, but to exhibit their logical
connections and plant the seeds of data abstraction.

Part II develops the concepts of information hiding, data abstraction, and
modular design. Chapter 4 studies stacks, Chapter 5 queues, and Chapter 6 lists
and strings. Each of these data types is studied first as a simple concept, then
in the precise specification of structure and operations as an abstract data type,
then in its implementation in Pascal declarations and procedures, and finally as
it is applied in complete programs.

Linked stacks, queues, and lists appear in Chapters 7 and 8. Many stu-
dents will have had little or no previous experience with Pascal pointer types,
so Chapter 7 carefully develops the ideas of dynamic memory allocation and
linked structures, as it fully presents the necessary Pascal syntax. Linked stacks,
queues, and lists are then developed as alternative implementations for abstract
data types that are already familiar. The text emphasizes the importance of con-
forming with the specifications previously introduced for each abstract data type
and maintaining the modularity of structure that allows the easy replacement of
one implementation by another.

Part II develops several application programs that illustrate the methods
of data abstraction and modular design. Chapter 4 presents a reverse Polish
calculator that uses a stack; Chapter 5 applies queues to a program that simulates
traffic patterns at a small airport; Chapter 6 develops a miniature text editor that
does extensive list and string processing; and Chapter 8 outlines a group project
for a program that performs calculations on polynomials represented as linked
lists.

Part III broaches the comparative study and analysis of algorithms in the
context of searching and sorting. With binary search as developed in Chapter 9,
the student learns that vast improvements can be made over the naive methods of
the introductory course. The translation of the idea of binary search into a precise
algorithm, however, is fraught with danger, from which a simple algorithm
verification, based on a loop invariant, provides release.

From the simple sorting methods developed in Chapter 10, the student learns
that any one of several different methods can prove best in different applications.
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Part IV:
Recursion

Part V:
Further
Structures and
Algorithms

Appendices

Analysis of algorithms is therefore a worthy goal. This book, however, assumes
very little mathematical preparation, and therefore takes a simple and intuitive
approach to algorithm analysis. The principal tool is to draw comparison trees.
The general shape and size of the tree demonstrate the differences between lin-
ear and logarithmic behavior. The big Oh notation is introduced in this part
to express these differences. The study of comparison trees also leads natu-
rally, in Chapter 11, to the introduction of binary trees as a new abstract data
type.

Recursion is a powerful tool, but one that is often misunderstood and some-
times used improperly. Some textbooks treat it as an afterthought, applying it
only to trivial examples and apologizing for its alleged expense. Others give
little regard to its pitfalls. I have therefore essayed to provide as balanced a
treatment as possible. Whenever recursion is the natural approach it is used
without hesitation, but it is neither introduced early and then ignored, nor is it
applied first to problems (like linear lists or binary search) for which iterative
methods are equally easy. Instead, in this text, its first use is in Chapter 11,
where binary trees are developed as data structures based on ideas from linear
lists, binary search, and comparison trees. Chapter 12 then provides a short, but
extremely important discourse on the principles of recursion and its implemen-
tation. Chapter 13 further illustrates the importance of recursion by developing
mergesort and quicksort and showing the great gains in efficiency that they pro-
vide. Chapter 14, finally, presents the examples of backtracking, lookahead in
games, and compilation by recursive descent to illustrate some of the broad range
of applications for recursion.

The remaining chapters of the book collect further important topics from data
structures and algorithms. Chapter 15 studies tables as structures accessed by
key rather than by position. Chapter 16 further develops this idea by studying
hash tables. Chapter 17 introduces graphs as mathematical models useful for
problem solving and studies the ways in which they can be represented by the
use of lists and of tables.

Just as Chapters 15-17 point to further study in data structures, Chapter 18
points to further study in software engineering, by introducing some of its major
concerns, including problem specification and analysis, prototyping, algorithm
design, refinement, verification, and analysis. These concerns are illustrated by
working through an example project (ConwaY’s game of Life). A simple proto-
type program is first developed and analyzed. This analysis leads to the de-
velopment of a second program for the Life game, one based on an algorithm
that is sufficiently subtle as to show the need for precise specifications and ver-
ification, and one that shows why care must be taken in the choice of data
structures.

The book concludes with three appendices. The first reviews important
properties of logarithms and factorials used in algorithm analysis. The second
summarizes the syntax of Pascal. The third is an annotated bibliography de-
scribing references appropriate to the topics studied in the book. Notes through-
out the text urge the student to consult this bibliography for further informa-
tion.
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Course Structure

ACM course CS2

layered approach

Further Features

This book is intended primarily for a second course in computer science with
one term of Pascal programming as prerequisite. The book is based on the ACM
course CS2 and contains all the topics specified for this course. With the rapid de-
velopment of computer science, however, this course is in continual change. This
course usually includes some aspects of software engineering, some treatment of
data structures and abstraction, and some survey of topics that will be studied
further in more advanced courses. The degree of emphasis of each, however,
differs from institution to institution. This book, therefore, contains significantly
more material than can be reasonably studied in most one-term courses, so that
an instructor can choose topics appropriate for any of the preceding emphases.

The core topics specified for ACM Course CS2 all appear in Chapters 1-12
of this book. A one-term course based closely on CS2 will normally include
most of the content of these chapters, except for some of the algorithm analyses,
verifications, and some of the example programs. The later chapters present
advanced optional topics suggested for possible inclusion in CS2.

In most of its chapters this book takes a layered approach that allows the
instructor to decide easily the depth to which each topic will be studied. The
fundamental topics of each chapter are developed early in the chapter. The
later sections contain applications and more theoretical treatments that can be
omitted with no loss of continuity. These more theoretical topics, included for
the interested reader, are either not referred to again or are used only in the
theoretical sections appearing at the end of later chapters.

Even if it is not covered in its entirety, this book will provide enough depth
to enable interested students to continue using it as a reference in later work.
It is important in any case to assign major programming projects and to allow
adequate time for their completion.

m Chapter Previews. Each chapter begins with an outline and a brief state-
ment of goals and content to help the reader establish perspective.

m Application Programs. The text includes several large, complete programs
that illustrate principles of good software design and application of the
methods developed in the text. Code reading is an important skill for a
programmer, but one that is often neglected in textbooks.

m Software Diskette. With each copy of the book is included a software
diskette containing all the programs and program extracts appearing in the
text. By starting from this software the student can learn many benefits of
reusable programs while implementing new programming projects.

m Programming Precepts. Many principles of good programming are sum-
marized with short, pithy statements that are well worth remembering.

m Marginal Notes. Keywords and other important concepts are highlighted
in the left margin, thereby allowing the reader to locate the principal ideas
of a section without delay.
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m Pointers and Pitfalls. Each chapter of the book contains a section giving
helpful hints concerning problems of program design.

m Exercises. Exercises appear not only at the ends of chapters but with almost
every major section. These exercises help with the immediate reinforcement
of the ideas of the section and develop further related ideas.

m Projects. Programming projects also appear in most major sections. These
include simple variations of programs appearing in the text, completion of
projects begun in the text, and major new projects investigating questions
posed in the text.

m Review Questions. Each chapter concludes with simple review questions
to help the student collect and summarize the principal concepts of the
chapter.

m Instructor’s Supplements. Instructors teaching from this book may obtain
copies of all the following materials:

m The Instructor’s Resource Manual contains teaching notes on each chap-
ter, together with complete, detailed solutions to every exercise and
programming project in the text.

m The Transparency Masters (several hundred in total) contain enlarged
copies of almost all diagrams, specifications, program segments, and
other important extracts from the text.

m The package of Software Diskettes contains complete, running programs
for every programming project in the text. These programs are supplied
in two forms: one in standard Pascal, and one that employs Turbo
Pascal units to accomplish data abstraction and information hiding as
appropriate.
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PROLOGUE

The greatest difficulties of writing large computer programs are not in deciding
what the goals of the program should be, nor even in finding methods that can
be used to reach these goals. The president of a business might say, “Let’s get
a computer to keep track of all our inventory information, accounting records,
and personnel files, and let it tell us when inventories need to be reordered and
budget lines are overspent, and let it handle the payroll.” With enough time and
effort, a staff of systems analysts and programmers might be able to determine
how various staff members are now doing these tasks and write programs to do
the work in the same way.
This approach, however, is almost certain to be a disastrous failure. While
interviewing employees, the systems analysts will find some tasks that can be
problems of large put on the computer easily and will proceed to do so. Then, as they move other
programs  work to the computer, they will find that it depends on the first tasks. The output
from these, unfortunately, will not be quite in the proper form. Hence they need
more programming to convert the data from the form given for one task to the
form needed for another. The software project begins to resemble a patchwork
quilt. Some of the pieces are stronger, some weaker. Some of the pieces are
carefully sewn onto the adjacent ones, some are barely tacked together. If the
programmers are lucky, their creation may hold together well enough to do most
of the routine work most of the time. But if any change must be made, it will
have unpredictable consequences throughout the system. Later, a new request
will come along, or an unexpected problem, perhaps even an emergency, and
the programmers’ efforts will prove as effective as using a patchwork quilt as a
safety net to catch people jumping from a tall building.



