PASCAL VERSION

PROGRAMMING
. WITH
DATA STRUCTURES

ROBERT L. KRUSE

PROGRAMMING WITH

DATA STRUCTURES

Pascal Version

Robert L. Kruse

Saint -bdawpter Lniversity
Halitax, Wova Scotia

Prentice Hall
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

KRUSE, ROBERT LEROY

Programming with data structures / Pascal version

Bibliography: p. 614
Includes index.
ISBN 0-13-729238—4

1. Electronic digital computers—Programming. 2. Data structures

(Computer science)
QA76.6.K774 1989
005.13'3—dc19

3. Pascal (Computer program language) 1. Title.

88-26015

The author and publisher of this book have used their best efforts in preparing this book. These efforts in-
clude the research, development, and testing of the theory and programs in the book to determine their ef-
fectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and publisher shall not be liable

in any event for incidental or consequential damages in connection with, or arising out of, the furnishing,

performance, or use of these programs.

Editorial production/supervision: Debbie Young

Interior design: Dawn Stanley (Aurora Graphics)

Cover design: Christine Gehring-Wolf

Page layout: Kenny Beck

Manufacturing buyer: Mary Noonan

Cover art: Accent in Rose (1926) by Wassily Kandinsky (1866-1944)
Paris, Musée National d’Art Moderne
RIRAUDON / Art Resource CRL 28807

The typesetting and color separation were done by the author using PrelgX, a preprocessor and
macro package for the TgX typesetting system and POSTSCRIPT page-description language.
PrelgX is a trademark of Robert L. Kruse; TEX is a trademark of the American Mathematical
Society; POSTSCRIPT is a registered trademark of Adobe Systems, Inc.

© 1989 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

[

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 21

ISBN 0-L3-729238-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Pentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

PREFACE

An apprentice carpenter may want only a hammer and a saw, but a master
craftsman employs many precision tools. Computer programming likewise re-
quires reliable tools to cope with the complexity of real applications. This book
treats structured problem solving, data abstraction, and the comparative study
of algorithms as fundamental tools of program design. These tools are applied
to develop both data structures and software engineering principles.

The goal of programming is the construction of programs that are clear,
complete, and functional. Many students, however, find difficulty in translating
abstract ideas into practice. This book, therefore, takes special care in the formu-
lation of ideas into algorithms and in the refinement of algorithms into concrete
programs that can be applied to practical problems. The process of data speci-
fication and abstraction, similarly, comes before the selection of data structures
and their implementations.

I believe in progressing from the concrete to the abstract, in the careful de-
velopment of motivating examples, followed by the presentation of ideas in a
more general form. At an early stage of their careers most students need rein-
forcement from seeing the immediate application of the ideas that they study,
and they require the practice of writing and running programs to illustrate each
important concept that they learn. This book therefore contains many samples,
both short procedures and complete programs of substantial length. The exer-
cises and programming projects, moreover, constitute an indispensable part of
this book. Many of these are immediate applications of the topic under study,
often requesting that programs be written and run, so that algorithms may be
tested and compared. Some are larger projects, and a few are suitable for use by
a group of several students working together.

Xi

-

xi| W PREFACE

Synopsis

Part I:
Programming
Principles

Part II1:
Linear Data
Structures

Part I11:
Algorithms and
their Analysis

The reader of this book should have some experience in elementary Pascal pro-
gramming, experience typical of a one-term introductory programming course.
Part I summarizes many of the important principles of writing good programs
and reviews some features of Pascal from an advanced point of view. Chapters 1
and 2 take, as an example, the problem of calculating and printing the calendar
of any given year. In the context of this example, Chapter 1 reviews methods for
problem solving and algorithm development, emphasizes the importance of ex-
act specifications for subprograms, and illustrates the use of preconditions and
postconditions to help ensure algorithm correctness. Chapter 2 continues the
study of program development with questions of style, coding, debugging, and
testing. Chapter 3 takes a fresh look at four structures provided by Pascal for
data encapsulation: arrays, records, sets, and files. Its aim is not only to sum-
marize and illustrate the syntax of these structures, but to exhibit their logical
connections and plant the seeds of data abstraction.

Part II develops the concepts of information hiding, data abstraction, and
modular design. Chapter 4 studies stacks, Chapter 5 queues, and Chapter 6 lists
and strings. Each of these data types is studied first as a simple concept, then
in the precise specification of structure and operations as an abstract data type,
then in its implementation in Pascal declarations and procedures, and finally as
it is applied in complete programs.

Linked stacks, queues, and lists appear in Chapters 7 and 8. Many stu-
dents will have had little or no previous experience with Pascal pointer types,
so Chapter 7 carefully develops the ideas of dynamic memory allocation and
linked structures, as it fully presents the necessary Pascal syntax. Linked stacks,
queues, and lists are then developed as alternative implementations for abstract
data types that are already familiar. The text emphasizes the importance of con-
forming with the specifications previously introduced for each abstract data type
and maintaining the modularity of structure that allows the easy replacement of
one implementation by another.

Part II develops several application programs that illustrate the methods
of data abstraction and modular design. Chapter 4 presents a reverse Polish
calculator that uses a stack; Chapter 5 applies queues to a program that simulates
traffic patterns at a small airport; Chapter 6 develops a miniature text editor that
does extensive list and string processing; and Chapter 8 outlines a group project
for a program that performs calculations on polynomials represented as linked
lists.

Part III broaches the comparative study and analysis of algorithms in the
context of searching and sorting. With binary search as developed in Chapter 9,
the student learns that vast improvements can be made over the naive methods of
the introductory course. The translation of the idea of binary search into a precise
algorithm, however, is fraught with danger, from which a simple algorithm
verification, based on a loop invariant, provides release.

From the simple sorting methods developed in Chapter 10, the student learns
that any one of several different methods can prove best in different applications.

Preface B Yjii

Part IV:
Recursion

Part V:
Further
Structures and
Algorithms

Appendices

Analysis of algorithms is therefore a worthy goal. This book, however, assumes
very little mathematical preparation, and therefore takes a simple and intuitive
approach to algorithm analysis. The principal tool is to draw comparison trees.
The general shape and size of the tree demonstrate the differences between lin-
ear and logarithmic behavior. The big Oh notation is introduced in this part
to express these differences. The study of comparison trees also leads natu-
rally, in Chapter 11, to the introduction of binary trees as a new abstract data
type.

Recursion is a powerful tool, but one that is often misunderstood and some-
times used improperly. Some textbooks treat it as an afterthought, applying it
only to trivial examples and apologizing for its alleged expense. Others give
little regard to its pitfalls. I have therefore essayed to provide as balanced a
treatment as possible. Whenever recursion is the natural approach it is used
without hesitation, but it is neither introduced early and then ignored, nor is it
applied first to problems (like linear lists or binary search) for which iterative
methods are equally easy. Instead, in this text, its first use is in Chapter 11,
where binary trees are developed as data structures based on ideas from linear
lists, binary search, and comparison trees. Chapter 12 then provides a short, but
extremely important discourse on the principles of recursion and its implemen-
tation. Chapter 13 further illustrates the importance of recursion by developing
mergesort and quicksort and showing the great gains in efficiency that they pro-
vide. Chapter 14, finally, presents the examples of backtracking, lookahead in
games, and compilation by recursive descent to illustrate some of the broad range
of applications for recursion.

The remaining chapters of the book collect further important topics from data
structures and algorithms. Chapter 15 studies tables as structures accessed by
key rather than by position. Chapter 16 further develops this idea by studying
hash tables. Chapter 17 introduces graphs as mathematical models useful for
problem solving and studies the ways in which they can be represented by the
use of lists and of tables.

Just as Chapters 15-17 point to further study in data structures, Chapter 18
points to further study in software engineering, by introducing some of its major
concerns, including problem specification and analysis, prototyping, algorithm
design, refinement, verification, and analysis. These concerns are illustrated by
working through an example project (ConwaY’s game of Life). A simple proto-
type program is first developed and analyzed. This analysis leads to the de-
velopment of a second program for the Life game, one based on an algorithm
that is sufficiently subtle as to show the need for precise specifications and ver-
ification, and one that shows why care must be taken in the choice of data
structures.

The book concludes with three appendices. The first reviews important
properties of logarithms and factorials used in algorithm analysis. The second
summarizes the syntax of Pascal. The third is an annotated bibliography de-
scribing references appropriate to the topics studied in the book. Notes through-
out the text urge the student to consult this bibliography for further informa-
tion.

xiv B PREFACE

Course Structure

ACM course CS2

layered approach

Further Features

This book is intended primarily for a second course in computer science with
one term of Pascal programming as prerequisite. The book is based on the ACM
course CS2 and contains all the topics specified for this course. With the rapid de-
velopment of computer science, however, this course is in continual change. This
course usually includes some aspects of software engineering, some treatment of
data structures and abstraction, and some survey of topics that will be studied
further in more advanced courses. The degree of emphasis of each, however,
differs from institution to institution. This book, therefore, contains significantly
more material than can be reasonably studied in most one-term courses, so that
an instructor can choose topics appropriate for any of the preceding emphases.

The core topics specified for ACM Course CS2 all appear in Chapters 1-12
of this book. A one-term course based closely on CS2 will normally include
most of the content of these chapters, except for some of the algorithm analyses,
verifications, and some of the example programs. The later chapters present
advanced optional topics suggested for possible inclusion in CS2.

In most of its chapters this book takes a layered approach that allows the
instructor to decide easily the depth to which each topic will be studied. The
fundamental topics of each chapter are developed early in the chapter. The
later sections contain applications and more theoretical treatments that can be
omitted with no loss of continuity. These more theoretical topics, included for
the interested reader, are either not referred to again or are used only in the
theoretical sections appearing at the end of later chapters.

Even if it is not covered in its entirety, this book will provide enough depth
to enable interested students to continue using it as a reference in later work.
It is important in any case to assign major programming projects and to allow
adequate time for their completion.

m Chapter Previews. Each chapter begins with an outline and a brief state-
ment of goals and content to help the reader establish perspective.

m Application Programs. The text includes several large, complete programs
that illustrate principles of good software design and application of the
methods developed in the text. Code reading is an important skill for a
programmer, but one that is often neglected in textbooks.

m Software Diskette. With each copy of the book is included a software
diskette containing all the programs and program extracts appearing in the
text. By starting from this software the student can learn many benefits of
reusable programs while implementing new programming projects.

m Programming Precepts. Many principles of good programming are sum-
marized with short, pithy statements that are well worth remembering.

m Marginal Notes. Keywords and other important concepts are highlighted
in the left margin, thereby allowing the reader to locate the principal ideas
of a section without delay.

Preface B XV

m Pointers and Pitfalls. Each chapter of the book contains a section giving
helpful hints concerning problems of program design.

m Exercises. Exercises appear not only at the ends of chapters but with almost
every major section. These exercises help with the immediate reinforcement
of the ideas of the section and develop further related ideas.

m Projects. Programming projects also appear in most major sections. These
include simple variations of programs appearing in the text, completion of
projects begun in the text, and major new projects investigating questions
posed in the text.

m Review Questions. Each chapter concludes with simple review questions
to help the student collect and summarize the principal concepts of the
chapter.

m Instructor’s Supplements. Instructors teaching from this book may obtain
copies of all the following materials:

m The Instructor’s Resource Manual contains teaching notes on each chap-
ter, together with complete, detailed solutions to every exercise and
programming project in the text.

m The Transparency Masters (several hundred in total) contain enlarged
copies of almost all diagrams, specifications, program segments, and
other important extracts from the text.

m The package of Software Diskettes contains complete, running programs
for every programming project in the text. These programs are supplied
in two forms: one in standard Pascal, and one that employs Turbo
Pascal units to accomplish data abstraction and information hiding as
appropriate.

Acknowledgments

It is a pleasure to recognize the help of the people who have contributed in many
ways to the writing and production of this book.

This book, first of all, derives part of its content from Data Structures and
Program Design, published by Prentice Hall in 1984 and 1987. (The current book
omits most of the advanced topics from that book, replacing them with ad-
ditional examples and expanded explanation of more elementary topics.) My
thanks, therefore, are due to the many people who have contributed to the con-
tinuing success that Data Structures and Program Design has enjoyed. These
people—named in the preface to that book—include colleagues, students, and
the editorial, marketing, and sales staff of Prentice Hall.

The writing, revision, and production of this book have been long and dif-
ficult but helped by the frequent encouragement I have received. My mother,
first of all, gave me the patient understanding and love without which the work
could not have been completed. Family and friends have cheered me on; col-
leagues have given valuable suggestions and advice; and students have shown
the enthusiasm and joy of discovery that make the effort worthwhile.

xvi W PREFACE

ANDREW L. MEADE and J. Davib BRowN have worked diligently and faithfully
with me in producing solutions to all the exercises and programming projects,
in preparing the solutions manual and the software diskettes, in testing all the
programs from the book, in bringing the text files up to date, and in improving
the consistency and clarity of exposition. STEVEN A. MaTHESON has helped greatly
with the design and programming of PrelgX, the preprocessor and macro package
used to typeset this book in conjunction with DoNaLD KNUTH's typesetting system
TgX and the page-description language PosTScrirT.

A good many reviewers have suggested ways to improve the organization
and exposition of the book. Among these are ANDREw BERNAT (University of
Texas), Joun Curak (Pennsylvania State University), EiLeen ENTIN (Wentworth In-
stitute of Technology), Davip R. FaLconer (California State University at Fuller-
ton), FRANk GERGELYI (New Jersey Institute of Technology), Davip KroGer (Miami
University), LAwreNce M. LeviNE (Baruch College, City University of New York),
IvaN Liss (Radford University), and EmiL C. Neu (Stevens Institute of Technol-
ogy). Thanks are also due to other reviewers who did not wish to be named and
to those whose contributions to Data Structures and Program Design have been
carried into the present book.

The production of this book has given me the opportunity to meet and work
with many members of the Prentice Hall staff, people who have been consistently
pleasant and helpful in their dealings with me. Ros Dewey, Marketing Manager
for Computer Science and Engineering, has taken a keen interest in promoting
this book. ALiCE DwORKIN, Supplements Editor, has been unfailingly patient,
understanding, and helpful in working to produce a comprehensive instructional
package. The production editor, DEBBIE YOUNG, and the staff whose names appear
on the copyright page have worked hard to expedite the publication of this book
while maintaining standards of the highest quality.

But it is my editors who merit the greatest thanks: James F. FECGeN, Jr., who
first encouraged me to undertake this project, and Marcia J. HortoNn, Editor-in-
Chief for Computer Science and Engineering, who worked with me with cheerful
patience and keen insight to bring it to fruition. I am proud to count Jim and

Marcia not only as my respected colleagues in publishing, but even more as my
friends.

RoOBERT L. KRUSE

PROGRAMMING
WITH
DATA STRUCTURES

CONTENTS

Preface xi 1.7 Refining the Calendar Algorithm 18

Synopsis xii 1.8 Data Abstraction 25

Course Structure Xiv 1.9 Names 27

Further Features xiv

d Y 1.10 Documentation and Format 29
Acknowledgments XV
1.11 Coding 31
Pointers and Pitfalls 37

Prologue 1

For Further Study 38

Review Questions 38

PART |
P : Principl 5 Chapter 2
rogramming Frincipies Program Development 40
Chapter 1 21 geclargtions 41
. .1.1 Constants 41
Problem Solving 7 212 Data Types 43
1.1 The Calendar Problem: A First Example 8 2.1.3 Variables 46
1.2 First Step: Specifying the Problem 8 2.2 Coding 49

2.2.1 The Main Program 49

1. : ificati
3 The Calendar Problem: Specifications 12 529 Stubs 51

1.4 OQutlining the Method: 2.2.3 Input and Output 52

The Overall Structure 13 2.2.4 Remaining Procedures 56
1.5 The Calendar Program: Overall Structure 15 2.2.5 Drivers 58
1.6 Refinement: Specifying More Detail 16 2.3 Debugging 60

vi B CONTENTS

2.4 Program Testing 64
Pointers and Pitfalls 68

Review Questions 69

Chapter 3
Data Packaging 70

3.1 Arrays g
3.1.1 One-Dimensional Arrays 72
3.1.2 Multidimensional Arrays
and Arrays of Arrays 74
3.2 Records 78
3.2.1 Definition and Examples 78

3.2.2 Hierarchical Records:
Data Abstraction 79

3.2.3 The with Statement 80
3.2.4 Variant Records 82

3.3 Sets 85

3.4 Files 89
3.4.1 Files and Arrays 89
3.4.2 Pascal Processing with read and write
3.4.3 File Windows 92
3.4.4 Text Files 95

3.5 Choosing Data Structures 101
Pointers and Pitfalls 102

Review Questions 103

PART I

Linear Data Structures 105

Chapter 4

Stacks 107

4.1 Definition and Operations 108
4.1.1 Examples 110
4.1.2 Information Hiding 111
4.1.3 Specifications for a Stack 112

4.2 Array Implementation of Stacks 116
4.3 Application: Reverse Polish Calculator 121
4.4 Translation into Postfix Form 129

Pointers and Pitfalls 137

Review Questions 138

Chapter 5

Queues 139

5.1 Definitions 140

5.2 Implementations of Queues 143
5.3 Circular Queues in Pascal 149

5.3.1 Implementation with a Counter
5.3.2 Implementation with
Special Index Values 151

5.4 Application of Queues: Simulation

5.4.1 Introduction 154

5.4.2 Simulation of an Airport 154

5.4.3 The Main Program 156

5.4.4 Steps of the Simulation 158

5.4.5 Random Numbers 162

5.4.6 Sample Results 164

Pointers and Pitfalls 169

Review Questions 169

Chapter 6
Lists and Strings 171

6.1 Qperations on Lists 172
6.1.1 Simple Operations 172
6.1.2 Windows 173
6.1.3 List Changes 176
6.1.4 Other Operations 177

6.2 Implementation of Lists 180
6.2.1 Type Declarations 180
6.2.2 Simple Operations 180
6.2.3 Window Operations 182
6.2.4 List Changes 183

6.3 Strings 186
6.3.1 String Operations 187
6.3.2 Implementation of Strings 189

6.4 Application: A Text Editor 196
6.4.1 Specifications 196
6.4.2 Implementation 197

Pointers and Pitfalls 206

Review Questions 207

149

154

Chapter 7
Linked Stacks and Queues 208

7.1 Dynamic Memory Allocation and Pointers 209
7.1.1 The Problem of Overflow 209
7.1.2 Pointers 209
7.1.3 Further Remarks 211

7.2 Pointers and Dynamic Memory in Pascal 212
7.3 The Basics of Linked Lists 217

7.4 Linked Stacks 222
7.4.1 Declarations 222
7.4.2 Pushing and Popping Entries 222
7.4.3 Processing Nodes 223
7.4.4 Other Operations 227
7.5 Linked Queues 229
7.6 Abstract Data Types
and Their Implementations 233
7.6.1 Introduction 233
7.6.2 General Definitions 235
7.6.3 Refinement of Data Specification 238

Pointers and Pitfalls 240

Review Questions 241

Chapter 8
Linked Lists 242

8.1 Simply Linked Implementation of Lists 243

8.2 Doubly Linked Lists and Other Variations 253
8.2.1 Declarations for a Doubly Linked List 254
8.2.2 Operations on Doubly Linked Lists 254
8.2.3 Other Variations 256
8.2.4 Comparison of Implementations 258
8.2.5 Programming Hints 259

8.3 Application: Polynomial Arithmetic 262
8.3.1 Purpose of the Project 262

8.3.2 Data Structures
and Their Implementation 263

8.3.3 Reading and Writing Polynomials 265
8.3.4 Addition of Polynomials 267
8.3.5 Completing the Project 269

8.4 Linked Lists in Arrays 272
Pointers and Pitfalls 281

Review Questions 282

Contents B V||

PART Il

Algorithms and their Analysis 285

Chapter 9

Searching 287

9.1 Searching: Introduction and Notation 288
9.2 Sequential Search 290

9.3 Binary Search 297
9.3.1 Algorithm Development 297
9.3.2 Analysis of Binary Search 299
9.3.3 Comparison with Sequential Search 303

9.4 Asymptotics 307
9.4.1 Introduction 307
9.4.2 The Big Oh Notation 308
9.4.3 Imprecision of the Big Oh Notation 311
9.4.4 Ordering of Common Functions 312

9.5 A Lower Bound for Searching 313
Pointers and Pitfalls 316

Review Questions 316

Chapter 10

Sorting 318

10.1 Introduction: Ordered Lists 319

10.2 |nsertion Sort 322
10.2.1 Ordered Insertion 322
10.2.2 Sorting by Insertion 324
10.2.3 Contiguous Insertion Sort 326
10.2.4 Analysis 327

10.3 Selection Sort 331
10.3.1 The Algorithm 331
10.3.2 Contiguous Implementation 332
10.3.3 Analysis 334
10.3.4 Comparisons 334

10.4 ghell Sort 336
10.5 Lower Bounds 339
Pointers and Pitfalls 343

Review Questions 343

viii B CONTENTS

PART IV

Recursion 345

Chapter 11
Divide and Conquer:
Binary Trees 347

11.1 Examples of Recursion 348
11.1.1 Factorials: A Recursive Definition 348
11.1.2 The Towers of Hanoi 350

11.2 Binary Trees 358
11.2.1 Definitions 358
11.2.2 Traversal of Binary Trees 360
11.2.3 Linked Implementation
of Binary Trees 365
11.3 Binary Search Trees 370

11.3.1 Ordered Lists and
Implementations 371

11.3.2 Treesearch 372
11.3.3 Insertion into a Binary Search Tree 376
11.3.4 Treesort 381

11.3.5 Deletion from a
Binary Search Tree 383

11.3.6 Implementation of Ordered Lists 385
Pointers and Pitfalls 391

Review Questions 392

Chapter 12
Principles of Recursion 393

12.1 Designing Recursive Algorithms 394

12.2 How Recursion Works 394
12.2.1 Multiple Processors: Concurrency 395

12.2.2 Single-Processor Implementation:
Storage Areas 395

12.2.3 Re-Entrant Programs 397
12.2.4 Data Structures: Stacks and Trees 397
12.2.5 Conclusion 399

12.3 Tail Recursion 399

12.4 When Not to Use Recursion 401
12.4.1 Factorials 401
12.4.2 Fibonacci Numbers 402

12.4.3 Comparisons between
Recursion and lteration 405

12.5

Guidelines and Conclusions 406
Pointers and Pitfalls 408

Review Questions 409

Chapter 13

Further Sorting Methods 410

13.1 Divide-and-Conquer Sorting 411
13.1.1 The Main Ideas 411
13.1.2 An Example 412

13.2 Mergesort for Linked Lists 417
13.2.1 The Procedures 417
13.2.2 Analysis of Mergesort 420

13.3 Quicksort for Contiguous Lists 424
13.3.1 The Main Procedure 424
13.3.2 Partitioning the List 425
13.3.3 Analysis of Quicksort 427
13.3.4 Average-Case Analysis

of Quicksort 428

13.4 Heaps and Heapsort: Contiguous
Implementation of Binary Trees 436
13.4.1 Binary Trees

in Contiguous Storage 437

13.4.2 Heaps and Heapsort 438
13.4.3 Analysis of Heapsort 443
13.4.4 Priority Queues 444

13.5 Review: Comparison of Methods 446
Pointers and Pitfalls 450
Review Questions 451

Chapter 14

Further Applications

of Recursion 452

141

Backtracking: Postponing the Work 453
14.1.1 Solving the Eight-Queens Puzzle 453
14.1.2 Example: Four Queens 454

14.1.3 Backtracking 455

14.1.4 Refinement:
Choosing the Data Structures 456

14.1.5 Analysis of Backtracking 459

Contents m ix

14.2 Tree-Structured Programs:
Look-Ahead in Games 461

14.2.1 Game Trees 462

14.2.2 The Minimax Method 463
14.2.3 Algorithm Development 465
14.2.4 Refinement 466

14.3 Compilation by Recursive Descent 469
14.3.1 The Main Program 470
14.3.2 Type Declarations 471
14.3.3 Parsing Statements 472

Pointers and Pitfalls 475

Review Questions 476

PART V

Further Structures
and Algorithms 477

Chapter 15
Tables 479

15.1 Introduction: Breaking the Ig n Barrier 480
15.2 Rectangular Arrays 480

15.3 Tables of Various Shapes 483
15.3.1 Triangular Tables 483
15.3.2 Jagged Tables 485
15.3.3 Inverted Tables 486

15.4 Tables: A New Abstract Data Type 489

15.5 Application: Radix Sort 492
15.5.1 The ldea 492
15.5.2 Implementation 493
15.5.3 Analysis 497

Pointers and Pitfalls 497

Review Questions 498

Chapter 16
Hash Tables 499

16.1 Sparse Tables 500
16.2 Choosing a Hash Function 502

16.3 Collision Resolution
with Open Addressing 504

16.4 Collision Resolution by Chaining 511

16.5 Analysis of Hashing 515

16.6 Conclusions: Comparison of Methods 521
Pointers and Pitfalls 522

Review Questions 522

Chapter 17
Graphs 524

17.1 Mathematical Background 525
17.1.1 Definitions and Examples 525
17.1.2 Undirected Graphs 526
17.1.3 Directed Graphs 526

17.2 Computer Representation 527

17.3 Graph Traversal 532
17.3.1 Methods 532
17.3.2 Depth-First Algorithm 533
17.3.3 Breadth-First Algorithm 534

17.4 Topological Sorting 535
17.4.1 The Problem 535
17.4.2 Depth-First Algorithm 537
17.4.3 Breadth-First Algorithm 538

17.5 A Greedy Algorithm: Shortest Paths 540
17.6 Graphs as Data Structures 545
Pointers and Pitfalls 547

Review Questions 547

Chapter 18
Introduction to
Software Engineering 548

18.1 The Software Life Cycle 549

18.2 The Game of Life 552
18.2.1 Rules for the Game of Life 553
18.2.2 Examples 553
18.2.3 The First Solution 555
18.2.4 Life: The First Main Program 556
18.2.5 Subprograms for Life 557

18.3 Program Review and Problem Solving 560

18.4 Algorithm Development:
A Second Version of Life 565

X M CONTENTS

18.5 Verification of Algorithms 570
18.5.1 Proving the Program 570
18.5.2 Invariants and Assertions 572
18.5.3 Initialization 573

18.6 Implementation and Coding 575
18.6.1 Implementation of Data Types
18.6.2 High-Level Procedures 577

575

18.6.3 Processing the Hash Table 581

18.6.4 Other Subprograms 582
18.7 Program Analysis and Comparison
Pointers and Pitfalls 586

Review Questions 588

Appendix A

Logarithms and Factorials 589
A.1 Applications 589

A.2 Definition and Properties 590

A.3 Choice of Base 592

A.4 Stirling’s Approximation 594

Appendix B
Pascal Notes 596

B.1 Syntax Diagrams 596

B.2 General Rules 606
B.2.1 Identifiers 606
B.2.2 Rules for Spaces 607

B.2.3 Guidelines Used
for Program Format 608

B.2.4 Punctuation 608
B.2.5 Alternative Symbols 609

583

B.3 Standard Declarations 609
B.3.1 Constants 609
B.3.2 Types 611
B.3.3 Variables 611
B.3.4 Procedures 612
B.3.5 Functions 612

B.4 Operators 613

Appendix C
References for Further Study 614

Part |. Programming Principles 614
Problem Solving 614
Program Design and Style 614

Part Il. Linear Data Structures 616
Part lll. Algorithms and their Analysis 617

Part IV. Recursion 618
General Expositions 618
Towers of Hanoi 618
Binary Trees 619
Sorting 619
Backtracking 620
Look-Ahead in Games 620
Compilation by Recursive Descent 620
Part V. Further Structures and
Algorithms 620
Tables 620
Graphs 621
Software Engineering 621

Logarithms and
Other Mathematical Methods 622

Index 623

PROLOGUE

The greatest difficulties of writing large computer programs are not in deciding
what the goals of the program should be, nor even in finding methods that can
be used to reach these goals. The president of a business might say, “Let’s get
a computer to keep track of all our inventory information, accounting records,
and personnel files, and let it tell us when inventories need to be reordered and
budget lines are overspent, and let it handle the payroll.” With enough time and
effort, a staff of systems analysts and programmers might be able to determine
how various staff members are now doing these tasks and write programs to do
the work in the same way.
This approach, however, is almost certain to be a disastrous failure. While
interviewing employees, the systems analysts will find some tasks that can be
problems of large put on the computer easily and will proceed to do so. Then, as they move other
programs work to the computer, they will find that it depends on the first tasks. The output
from these, unfortunately, will not be quite in the proper form. Hence they need
more programming to convert the data from the form given for one task to the
form needed for another. The software project begins to resemble a patchwork
quilt. Some of the pieces are stronger, some weaker. Some of the pieces are
carefully sewn onto the adjacent ones, some are barely tacked together. If the
programmers are lucky, their creation may hold together well enough to do most
of the routine work most of the time. But if any change must be made, it will
have unpredictable consequences throughout the system. Later, a new request
will come along, or an unexpected problem, perhaps even an emergency, and
the programmers’ efforts will prove as effective as using a patchwork quilt as a
safety net to catch people jumping from a tall building.

