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Foreword

The Institute for Mathematical Sciences at the National University of
Singapore was established on 1 July 2000 with funding from the Ministry
of Education and the University. Its mission is to provide an international
center of excellence in mathematical research and, in particular, to pro-
mote within Singapore and the region active research in the mathematical
sciences and their applications. It seeks to serve as a focal point for scien-
tists of diverse backgrounds to interact and collaborate in research through
tutorials, workshops, seminars and informal discussions.

The Institute organizes thematic programs of duration ranging from one
to six months. The theme or themes of each program will be in accordance
with the developing trends of the mathematical sciences and the needs and
interests of the local scientific community. Generally, for each program there
will be tutorial lectures on background material followed by workshops at
the research level.

As the tutorial lectures form a core component of a program, the lec-
ture notes are usually made available to the participants for their immediate
benefit during the period of the tutorial. The main objective of the Insti-
tute’s Lecture Notes Series is to bring these lectures to a wider audience.
Occasionally, the Series may also include the proceedings of workshops and
expository lectures organized by the Institute. The World Scientific Pub-
lishing Company and the Singapore University Press have kindly agreed
to publish jointly the Lecture Notes Series. This volume, “Computational
Methods in Large Scale Simulation,” is the sixth of this Series. We hope
that through regular publication of lecture notes the Institute will achieve,
in part, its objective of promoting research in the mathematical sciences
and their applications.

January 2005 Louis H. Y. Chen
Denny Leung
Series Editors



Preface

Due to major advances in basic and applied simulation sciences as well as
the availability of large scale computational capability, high performance
computing (HPC) has enabled engineers and scientists to solve complex,
multi-disciplinary problems in which issues of scale are pervasive.

To further develop large scale simulation as a tool for the research com-
munity, the Institute for Mathematical Sciences (IMS) at the National
University of Singapore and the Institute of High Performance Comput-
ing (IHPC) organized a program entitled “Advances and Mathematical
Issues in Large Scale Simulation”. The program, which commenced in
October 2002, focused on two main themes: Multiscale Simulation and Fast
Algorithms.

Multiscale Simulation

The sub-program related to Multiscale Simulation was intended to provide
a forum for the interdisciplinary blending of the different theoretical bases
for describing physical phenomena at different length scales. In the process,
an efficient coupling of the various disciplines for the modeling and direct
simulation of various types of physical problems was created. In the different
solutions developed, the systems to be investigated were divided into at least
three sub-domains, namely the macro, micro and nano subsystems.
Although the multiscale simulation method was quite clearly defined
conceptually inside each subsystem, the mathematical issues concerned the
efficient and accurate transition, which involved the handshaking or tran-
sition, between the continuum and the molecular models, and between the
molecular and quantum models. Attention was given to the description and
mathematical modeling of the handshake or transition regions, as well as to
the parallelization of the source codes for efficient multiscale computation.
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Fast Algorithms

For the sub-program on fast algorithms, focus was given to widely uti-
lized methodologies in scientific and engineering computations such as
Model Order Reduction, Fast Convergent Iterative schemes, Pre-corrected
Fast Fourier Transform (FFT) methods, Fast Multipole Methods and the
parallelization algorithm. Two major large scale engineering computation
problems were highlighted: Computational Electromagnetics and Compu-
tational Acoustics.

The topic on computational electromagnetics involved the development
of efficient techniques to simulate complicated, large scale electromagnetic
problems. Efforts were devoted to effective model order reduction, fast con-
vergent iterative schemes, pre-conditioning FFT methodology, fast multi-
pole method and parallel computation.

For computational acoustics, the problems investigated included the
prediction of the effectiveness of sound protection shields in environment
problems and noise reduction in both the automotive industry and in house-
holds. Some issues that were considered included infinite elements, wave-
envelope elements, effective iterative solvers, local/global FE acoustical so-
lutions, conjugated infinite elements for transient problems and parallel
computation. '

This volume of the Lecture Notes Series is dedicated to the “Advances
and Mathematical Issues in Large Scale Simulation”. The articles in the
book document the research undertaken by various Principal Investigators
in the field of large scale simulations and illustrate the manner which com-
putational methodology can be utilized to solve highly complex problems.
Their efforts in writing the articles are deeply appreciated.

We would like to express our gratitude to the Science and Engineer-
ing Research Council (SERC) of the Agency for Science, Technology and
Research (A*STAR) for supporting the program. A special thanks to Pro-
fessor Louis Chen for his foresight in forging this collaboration to initiate
the creation of new knowledge in the field of modeling and simulation.

Last but not least, we would like to thank all researchers from both
IHPC and NUS who participated in the program. Their collective contri-
butions have given the program a huge diversity that clearly demonstrates
the great versatility of large scale simulations.

January 2005 Khin Yong Lam and Heow Pueh Lee
Institute of High Performance Computing,
Singapore
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METHODS OF MULTISCALE MODELING IN MECHANICS

W. A. Curtin

Division of Engineering, Brown University
Box D, Providence, RI 02912
E-mail: curtin@engin.brown.edu

Multiscale modeling can be accomplished by either information
passing across scales, using appropriate methods at each individual
scale, or by coupled modeling wherein several scales are handled
simultaneously in different regions of space. This chapter reviews
some of the basic methods at each scale and some approaches to
atomistic/continuum coupling in solid mechanics.

1. Introduction

The mechanical behavior of materials involves processes over a wide
range of length and time scales. Electron and ion interactions dictate all
behavior, but it is not feasible to describe macroscopic behavior at this
fundamental level. Hence, quantum methods are useful for determining
crystal structure and elastic constants, for instance, as well as capturing
the chemistry of alloying and some details of individual defects such as
vacancies and dislocations. Atomistic mechanics, wherein the electronic
interactions are replaced by effective classical interatomic potentials,
more readily permits the study of material defects, and the interactions
between defects such as cracks and dislocations, or dislocations and
impurities. Computational power limits such studies to millions of
atoms, typically, corresponding to submicron volumes of material. In
materials that deform plastically and/or undergo fatigue degradation, the
collective behavior of defects, and especially dislocations, occurs on
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much larger scales of microns to millimeters. Descriptions of such
phenomena thus rely on simplified models of the defects, where
atomistic details such as the core structure of a dislocation are neglected
while the long-range fields and interactions among separated defects are
captured accurately. At the largest scales, corresponding to phenomena
occurring in structural components, continuum methods are employed,
wherein the defect behaviors are subsumed into effective constitutive
laws for the material deformation, and the macroscopic continuum field
quantities (displacement, stress) are calculated from appropriate partial
differential equations. Multiscale modeling is aimed at connecting these
different scales of phenomena.

Multiscale modeling can be divided into two basic approaches. The
first is “information passing”, in which information from smaller scale
models is distilled into appropriate use within larger scale models (Figure
1). For instance, quantum mechanical calculations of elastic constants
can be directly used in continuum elasticity calculations. More subtly,
quantum calculations can be used to design effective interatomic
potentials for atomistic scale modeling'”. Another example is the use of
quantum or atomistic models to determine effective material separation
laws (cohesive zones) for mesoscale modeling of crack nucleation and
growth®™®. In all cases, in the appropriate distillation of the smaller scale
information, the retention of key physical details must be retained while
secondary details such as fluctuations are neglected.

Quantum Atomistic Mesoscale Continuum
Mechanics Model Model Model

\ O o W a U o

& pan,zn‘l;lers . parameters parameters
ructure, latlice constant, Defect fields, mobilities, Collective response built

elastic moduli, defects interactions,...... into constitutive laws
energies, .....

Figure 1. Schematic of the “information passing™ mode of multiscale modeling.

The second approach to multiscale modeling is “direct coupling”,
wherein methods from several scales are used simultaneously within a
single computational framework (Figure 2). Such an approach retains
the small scale details in spatial regions where such details are absolutely
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necessary, often because the behavior has no clear accurate
representation in a larger-length scale description. Examples are
chemical reactions at a crack tip, which require quantum mechanics for
accurate rates, solute/dislocation-core interactions, which require
atomistic or quantum studies to elucidate the complex interactions in the
non-linear core region, and local amorphization at a crack tip, which
requires atomistics. Outside of such critical regions, a larger-scale
description can be perfectly acceptable, serving the purpose of providing
the smaller-scale region with the appropriate boundary conditions (e.g.
stress intensity factor or dislocation driving force). In general, the
overall strategy of this type of modeling is to eliminate degrees of
freedom where they are not necessary. As increasing scales are bridged,
quantum electronic degrees of freedom give way to atomistic degrees of
freedom, which give way to mesoscale degrees of freedom characterizing
only the defects, which are then subsumed into constitutive laws for
macroscopic behavior where the degrees of freedom are the field
quantities of interest.

ACOntiﬂu\u‘ﬂ
P 4 4L /

Mesoscopic region
(Discrete Dislocations)

) N
Fully atomistic
(coupling QM to Continuum)
Quantum mechanical

'(Chemical Reactions, g »'

Highly distorted bonds)

Figure 2. Schematic of “direct coupling™ or hierarchical multiscale modeling for

predicting stress corrosion cracking in a plastically-deforming metal.

There are two key issues in the “direct coupling” approach. The first
issue is the treatment of the interfaces between regions treated by
different methods, for which it is desired to avoid any artifacts due to the
merging of two physically different descriptions of the material. The
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second issue is the transfer of defects among the regions, where the
defect has a fundamentally different character in each regime. A
pertinent example is the transfer of an atomistic dislocation into a
continuum dislocation, wherein the details of the dislocation core are
lost, and the subsequent transfer of a continuum dislocation into a
continuum plastic strain field, wherein the dislocation as a separate entity
disappears entirely.

The purpose of this chapter is two-fold. We first present some of the
basic underlying methods relevant at each scale of computation. These
methods are the basis for the “information passing” approach. We then
discuss some methods for “direct coupling” of the atomistic and
continuum methods, and highlight some of the advantages and pitfalls of
such coupled approaches. Along the way, we present some examples of
these modes of multiscale modeling, drawn from the admittedly narrow
scope of work by the author and collaborators. A number of reviews
have been written recently on various aspects of multiscale modeling,

and we urge readers to study these works and the references therein®”.

2. Methods of Modeling at Various Scales

2.1. Quantum Mechanics

The behavior of matter is controlled by the interactions of electrons
and nuclei, which are governed by Schrodinger’s equation. Within the
Born-Oppenheimer approximation, wherein the nuclear motions {r,'"’}
are slow relative to those of the electrons {r,'”’}, Schrodinger’s equation
for the electrons with fixed nuclear coordinates is

2
-2 v, ey = B (1)
2m

where W is the multi-electron wavefunction and ¥ is the total Coulomb
potential function for the charge interactions. The necessity of
antisymmetry of W under exchange of any two electronic coordinates
makes this equation extremely difficult to solve, and so approximate
methods are needed particularly for many-atom systems such as solids.
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A useful approximation is based on the density functional theorem of
Hohenberg and Kohn, who showed that the total energy is a unique
functional of the electronic density o, and that the groundstate of the
system is the minimum of the energy with respect to the density®.
Formally, the energy is thus
pNP(r) | )
|r‘—'r,l xc

ELp)=TIp)+ [drp(r)V,,(r)+[ dr (]

where 7 is the kinetic energy, ¥, is the electron/ion interaction with
core electrons lumped into a pseudopotential (this approximation is not
necessary), and E is the exchange/correlation energy functional.
Given an approximation for the unknown functional E_, the
groundstate density and energy are often obtained as follows. Introduce
a pseudo single-electron wavefunction ¥, for each electron and

construct the density as

OEINACUAG 3

with the sum over occupied electron states. Use this to create a new set
of coupled effective Schrodinger equation for each electron
wavefunction as

2
[ h V2 4+ Vps(r)+jdr p(r) +e [pl+ p(r)e;c[p]]y/,. =EVY, )

2m =1

and solve this coupled set of equations self-consistently, using a
expansion of the individual /; in an appropriate basis set of orthogonal
functions. The total energy of the system is then calculated as

E=zi:e,. _%J. dr %+EK[P]—IWP0)€;[P] 5)

1

where we have used

E, =[drp(r)e, (r) ; €, =3¢, /0p ©
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With the energy above obtained for ions in some initial fixed
positions, an equilibrium state is then found by moving the ions to
minimize the total energy with respect to the ion coordinates. This is
achieved by calculating the ion forces from the Hellman-Feynmann
theorem as

__OE
or,

ion j

fr:on J T (7)
and using standard conjugate gradient or other numerical methods to
move the ions toward the positions of zero force®.

The outcome of all of the above manipulations is a first-principles
determination of the structure and energy of a system under some
specified conditions. From the energy versus structure information, one
can then investigate the possible existence of new phases of materials,
the phase behavior itself, elastic constants, chemistry effects, surface
energies, and defect structures, among other quantities. An example
relevant to mechanical behavior is the influence of Hydrogen on the
sliding behavior of blocks of Al along the (111) surface, which
influences dislocation stability and structure’. Table I shows the energy
of relevant stacking faults with and without H on the sliding (111)
surface at the appropriate octahedral or tetrahedral sites.

0.103
0.126
0.132

0.310

Table I. Energies of key stacking fault configurations in Al, with and without H on
the sliding surface (after Ref. 9).
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Quantum methods have severe computational limitations, however.
While the cost of any particular calculation depends on many details,
typical density functional calculations are performed on, at most,
hundreds of atoms. Modeling of multiple defects, defects with long-
range interactions, or situations with complex loading conditions, is
prohibitive, warranting consideration of larger-scale methods.

2.2. Atomistic Mechanics

Atomistic methods eliminate the electronic degrees of freedom and
follow the motions of the ions as atoms interacting via effective classical
interatomic potentials'®. There are a host of potentials in the literature
that have been developed for various materials'' ™. The energy of a
collection of atoms is obtained by summing up the interactions among
the individual atoms. A classic generic potential is the Lennard-Jones 6-
12 potential, where

12 6
o (o)
E=32Vu() 5 Vi) =4¢ | = | |~ ®)
U i iy

More-realistic potentials account for the multibody and environment-
dependence of the energetics. A form in widespread use for metallic
systems is the embedded-atom method (EAM) potential'’, where the
energy for atom i is

E(r)=F(p,)+ z Vpair (rij) ] (&)

This form contains a pair potential such as the above Lennard-Jones
potential plus an “embedding energy” F that depends on the electron
density at the atom i location due to the surrounding atoms,

p; = p'“(r;) ; p' =~ Bareatom electron density (10)

J#i
In practice, parameters in the function F, the pair-potential, and the
description of the bare electron density are varied to fit a wide range of
material properties as obtained by either experiment or quantum
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calculations. A typical set of properties used in the fit are equilibrium
lattice structure and lattice constants, elastic moduli, surface energies,
and vacancy formation energy.

A third class of potentials, typically used for covalently-bonded
materials, are multibody potentials' '*'". These are typified by the
Stillinger-Weber potential form'?

— (3)
Eg-izyu( )+ ZEK_{/( lj’l (ll)
J#i J#i k#i,j
used for Si. The three-body term in this type of potential permits the
consideration of highly directional bonding.
With an appropriate potential in hand, the ionic force is given by

e (12)
where E is the total system energy. Static equilibrium properties of a
collection of atoms subject to desired boundary conditions are then
obtained by solving for f, =0 using conjugate gradient or other
numerical techniques. Dynamic behavior is obtained by Molecular
Dynamics, i.e. solving Newton’s equations of motion incrementally in
time. To obtain static and dynamic properties at finite temperatures
requires the use of a thermostat that monitors and adjusts the total kinetic
energy of the system to simulate contact with an external heat bath and
maintain the desired temperature’’. With a thermostat, the equations of
motion then generally include a viscous damping term.

Atomistic simulations are particularly useful for investigating the
interactions of defects and structural evolution, such as during deposition
of atoms onto a surface, including finite temperature behavior and
motion of defects and atoms. Such simulations provide insight into the
fundamental behavior and provide information that can be passed to
larger-scale models. Figures 3-7 show various examples. Figure 3
shows crack growth in a nanolamellar Titanium-Aluminide, which
exhibits dislocation emission from the crack tip and interaction of
dislocations with the lamellar boundary”. From these simulations, one
can extract fracture toughness as a function of nanolamellar thickness,
for use in larger-scale cohesive zone models. Figure 4 shows the



