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Preface

HIS VOLUME is essentially a translation of the first

part of my Hebrew book Mavo LeMathematika' (Intro-
duction to Mathematics), but quite a number of modifications
and additions have been incorporated.

Two volumes of similar size, nature, and purpose are plan-
ned for publication during the next few years. One will
deal with the fundamental concepts of algebra (group, ring,
field) and their role in the extension of the number concept
to real, complex, and hypercomplex numbers; the other will
present and discuss the theory of sets, in particular trans-
finite cardinal and ordinal numbers.

These volumes developed from talks in the adult educa-
tion program given by the author in towns and rural settle-
ments of Palestine (now Israel) from 1929 on. Conse-
quently, the subject of the present volume and its treatment
meet the needs, abilities, and interests of gifted high school
students, of college freshmen, and, indeed, of laymen who
are interested in knowing what mathematics really deals
with—a question whose answer may have been concealed
rather than revealed by the presentation in their classes.

I wish to express my sincere thanks to Professor Jekuthiel
Ginsburg without whose efforts the publication of the volume
would not have been possible.

Jerusalem, Israel ABRAHAM A. FRAENKEL
Hebrew University

1Vol. I, Jerusalem, 1942; vol. II, Jerusalem, 1954. These two volumes
contain five parts which deal with the following topics: integers and theory
of numbers; the extension of the number-concept, including groups, rings,
fields, and a survey of algebra; analysis; theory of sets; geometry. A sup-
plementqry volume which deals with the foundations of mathematics is in
preparation.
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CHAPTER I

Natural Numbers as Cardinals

E ARE here concerned with the nature of the positive integers

which are known also as natural numbers. Contemporary
mathematical opinion follows that of previous centuries in regarding
these numbers as the keystone of the mathematical structure. In the
words of Weyl: ‘“Mathematics is entirely dependent, even with respect
to the logical forms of its exposition, upon the nature of the natural
numbers.” However, unlike our predecessors of only half a century
ago, most modern mathematicians do not think of mathematics as be-
ginning with the natural numbers and proceeding thence to the develop-
ment of various branches. The latest views rather tend to assign to
integers a middle position in the structure of the science. The lower
portions are devoted to the foundations of mathematics which are es-
tablished in the general theories of relation, order, sets, groups, fields
etc. as well as of logic, while the various mathematical disciplines, such
as theory of numbers, algebra, theory of functions and also most parts
of geometry, start from the level of natural number. It should be
noted, however, that even today a significant group of mathematicians
believe that it is impossible to develop the natural numbers from more
fundamental concepts and that we must regard them as emerging from
the very nature of the human mind or even as objects which are im-
posed upon us regardless of our will. This last view has been expressed
in a famous dictum of Kronecker! (1823-91): God created the integers,
the rest is work of man.

1. The Positional Notation

Before proceeding with a study of natural numbers it is appropriate
to devote a few words to their notation, that is, to the numeral system.
The difficulty involved in the notation of numbers arises from the fact
that infinitely many numbers must be represented by means of a finite
array of symbols. Moreover, we make the following two demands

1 See Math. Annalen, Vol. 43, 1893, p. 15.
1



2 INTEGERS AND THEORY OF NUMBERS

of our symbolism: (a) that the number of symbols be sufficiently small
to avoid undue claims to the memory; (b) that the representation of
even reasonably large numbers by means of our symbols should not oc-
cupy an amount of space which would make its notation inconvenient.
Both these objectives were attained by Hindu mathematicians?
through their invention of the positional system in which the value of
a numeral varies with the different places in whichitappears. Thus, if
we employ a given number j as the base of the system, the numeral s
represents the number s or s-j° only when it occupies the initial place,
that is, when it appears as the first digit to the right in the representa-
tion of the entire number. If the numeral occupies the second place
(second digit from the right), it represents the number s-j(s-j1); etc.
In the nth place it will represent s-7"~1. For example, s;5:5, denotes the
number s, + §1-7 + S2-72 on condition that So, S1, S are digits, i. e., num-
bers less than j. Hence the value of a symbol varies with its position
only when the basej is greaterthan 1,since the powersof 1 are all equal.
Therefore only such bases are admissible.

However, the positional principle in itself does not suffice. Were we
to employ, in a system with the base j, only the numerals 1, 2, 3,
j — 1, we would soon be confronted by numbers which could not be de-
scribed by means of our system. If, for example, we consider our decimal
system: j = 10, we should have to represent both thirteen and one
hundred and three by the same symbol, 13. As a matter of fact, one
of the most significant contributions to scientific progress was the inven-
tion of the zero, i. e., the principle that those places in which we do not
wish to put a numeral must be occupied by a special numerical symbol,
0. This invention, without which the use of the positional notation
would have been impossible, was brought to the west from India by
Arab scholars. The genius involved in this invention can best be
gauged from the fact that the greatest Greek mathematicians, including
Archimedes (287-212 B.C.) and Apollonios (265?-170 B.C.) who re-
mained unequalled in their fields for 1800 years, failed to hit upon it;
this, in spite of the fact that Archimedes in his book On the Number of
Sand (Yappirys) required the use of something like the positional sys-
tem. We moderns, as a result of continuous custom from childhood,
have ceased feeling how profound a scientific achievement is involved.

Besides the principal purpose, let us consider the two additional de-
mands formulated above. In other words, let us determine the most

2 See, for instance, B. Datta: ‘“Testimony of Early Arab Writers on the Origin of Our
Numerals,” Bulletin of the Calcutta Mathematical Society, vol. 24 (1933).

Other peoples also invented the positional notation independently of the Hindus. Amongst

these, besides the Babylonians, were the Mayas of Central America. As early as two thou-
sand years ago they even employed zero as a numeral.



ABRAHAM A. FRAENKEL 3

suitable number to be used as a base. There is no unique solution to
this problem; the choice partly depends on whether we wish to use our
numbers for scientific or for practical purposes. From a purely scien-
tific point of view preference must be given to that number, among the
infinite possibilities of choice for a base, which is absolutely distin-
guished from the rest as the smallest among them, namely, the number
2. (Of course, there exists no largest base.) As a matter of fact, in so
far as positional notation is employed in purely mathematical in-
vestigations, the binary scale (j = 2) is regularly chosen. Thus, the
number twenty-seven is denoted by :

11011 = 1-2° 4+ 1-2'4+0-2241-2° 4 1-2* =1+ 2 4+ 8 + 16.

This example suffices to indicate the inadequacy of the binary sys-
tem for practical purposes, since it involves undue lengthiness in the
representation of large numbers. In practice, therefore, it appears ad-
visable to choose a larger number which shall at the same time have as
many factors as possible relative to its size. From this point of view,
the numbers 6, 12, 24, 60 suggest themselves, with the first two to be
preferred, since in their case the number of primary symbols will re-
main fairly small. The sexagesimal system (5-12, 2-12) which is still
employed in the division of days into hours, hours into minutes, and
minutes into seconds as well as in the division of the circumference of
the circle into 360 degrees, relies on the fair divisibility properties of
60. (The same principle of choosing a number with a relatively large
number of factors is to be found in the division of the hour in the Jewish
Calendar into 1080 “‘parts’; for the number 1080 = 23-3%.5 has many
factors.) The number 10 upon which our decimal system is based is in-
ferior to 6 or 12, and its predominance is due to the accidental circum-
stance that man has ten fingers and that primitive man used the fingers
for counting.?

As late as the Roman period, the Roman numerals, in which the
number seventy-eight, for example, appears as LXXVIII, were em-
ployed. The example demonstrates the superiority of positional
system even in representing relatively small numbers. The use of the
alphabet for numerals has an additional drawback which would remain
even were the positional principle applied to them, as was proposed by
Ibn Ezra (c. 1092-1167) with respect to the Hebrew alphabet!; for by

3 For a recent attempt to establish the duodecimal system in common use, see F. E. An-
drews: New Numbers. How Acceptance of a Duodecimal Base Would Simplify Mathematics.
New York, 1935. On the other hand, it has been proposed to calculate by eights instead of
tens. See E. M. Tingley in School Science and Mathematics, April 1934; cf. Journal of Edu-
cational Research, January 1937. Cf. Scripta Math., vol. 10 (1944), p. 215.

4 See the edition of Sefer Hamispar, by Rabbi Abraham Ibn Ezra, issued by Moses Silber-

bq,rg (Fra_nkfurt, 1895). Cf. the essay of A. Loewy: Uber die Zahlbezeichnung in der ji-
dischen Literatur; Jeschurun (Berlin), vol. 17 (1930).
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assigning definite values to the letters of the alphabet we preclude their
use in the representation of undetermined numbers. This would have
made impossible the “literal arithmetic’ or symbolic algebra which came
into use in Europe since the thirteenth century and without which it
would be difficult for us to imagine any mathematical calculation.

Let us take as an example the well-known formula

(e + B)? = o® + 2aB + B

For the Greeks this meant only (1 + 2)2 = 1 4+ 4 + 4, because «
meant 1 and g meant 2. It was thus only a particular arithmetical
formula without general significance.®

2. The Concept of Cardinal Number

We shall now proceed to construct the numerical concept whose func-
tion is to indicate how many objects are contained in a given collec-
tion or “‘set.” Inorder to derive this concept as a logical construction
which, at the same time, shall retain contact with the psychological as-
pect of the number concept, we must recognize the fact that the com-
parison of sets of objects with respect to the number of elements con-
tained in each, is possible without using the concept of number. It is
said that there are still some primitive peoples who use for numeration
only the three words: ‘“‘one,” “two,” “many;” of course, for practical
purposes (as in the case of barter) they must also compare sets of ob-
jects which contain more than three objects. The means employed for
such comparisons is that of establishing a correspondence between the
objects of one set and those of the other, which is one of the most fun-
damental and indispensable operations of human thought. By this op-
eration we associate with each element of a set K a unique element of
another set L, so that no element of K is paired with more than one ele-
ment of L. Moreover, in the present case we establish a one-to-one
correspondence between the two sets by making the additional con-
dition that no two different elements of K shall be paired with the same
element in L. If such a correspondence can be established between all
the elements of K and L, it is evident that both sets contain the ‘“‘same
number’’ of elements in the ordinary sense.

Let us take the example of a barter between a collection K of apples
and a collection L of bananas. If the correspondence between these
two collections is defined as indicated by the arrows in the following

5 On the notation of numbers and allied subjects see the popularly written volume by

D. E. Smith and J. Ginsburg: Numbers and Numerals (Contributions of Mathematics to
Civilization, No. 1). New VYork, 1937.
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scheme:
K (Apples): o o o o o o
[ N/
L (Bananas): o e = = =

itisa one-valued correspondenceof bananas to apples, sinceto eachapple
but one banana is related. The last apple, however, is paired with a
banana which has already been paired with the preceding apple. As are-
sult, this correspondence is not a one-to-one correspondence (mapping) ;
for were we to change the order of association by reversing the direction
of the arrows we would have a banana against which two apples were
matched. If, however, we remove the last apple (or for that matter
any apple) from the collection, there exists a one-to-one correspondence
between the two sets. The existence of such a correspondence indi-
cates that the two sets contain the same number of elements.

From such considerations the concept of number develops by a grad-
ual process of generalization. The first step is to compare various sets
of one kind of objects (for example, two collections of apples) with re-
spect to their quantity. In this case we simply match one apple against
another without requiring any generalized conceptions. The next step
is to match sets whose elements are of different kinds. This requires a
more general concept which shall subsume the various kinds of objects
under consideration. The necessity for such a step occurs when we
wish to compare, for instance, a set of apples with a set of bananas, as
done above. In this case the inclusive concept of “fruit’”’ may be formed
and we can proceed, by establishing one-to-one correspondences, to
compare different collections of fruit. The utmost generalization of
such comparison occurs when we are no longer concerned at all with the
specific nature of the objects to be matched but merely compare sets of
objects or ‘“‘elements.” In making this last step our procedure finally
gives rise to the concept of number. By abstracting completely from the
specific nature of the elements involved we obtain the common property
of two sets between the elements of which there exists a one-to-one cor-
respondence: the number of elements in the set.

In practice, however, we make one further step which may at first
appear to be a retrogression. We introduce a universal set, or more
precisely, an array of universal sets with which to compare any given
set of elements. This universal set lends itself, thus, for use as a com-
mon yardstick through the medium of which any different sets may be
compared. The elements of these sets have no specific properties:
their sole function is to serve as an instrument with which to conduct

the process of counting. We may choose them as the sets of the first #
natural numbers
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1),@1,2),1,2,38),1,2,3,4),...,(1,2,3,...,n—1,m).

At the present stage of human culture, children learn to employ these
universal sets almost at infancy by counting the objects in their vicin-
ity.

If a one-to-one correspondence exists between the elements of two
sets they are said to be equivalent sets. Accordingly with respect to the
relation of equivalence neither set can be distinguished from the other.
A one-to-one correspondence between the elements of equivalent sets is
also called a “‘projection,” or “‘mapping,”’ of one set upon the other.

If, on the other hand, in every attempt® to establish a one-to-one cor-
respondence between the elements of K and L, there remain elements
(at least one element) in one set which cannot be paired with an ele-
ment of the other set, we know without having to resort to the use of
numbers that the two sets differ in magnitude. We can even establish
an “order of magnitude’” between the two sets, which is of practical im-
portance in the example of barter alluded to above; see section 3.

From the idea just described, the concept of number may be derived
as follows: To every set K we assign a symbol % to be called “‘the num-
ber of the elements contained in “K” or its cardinal number. The
cardinal numbers of two sets are equal if, and only if, the sets are equiva-
lent, i.e., if there exists a one-to-one correspondence between their
elements. The above construction can be described in a looser form as
follows: A set of elements (whether concrete or abstract) may have vari-
ous properties, such as the specific nature of its elements or the order in
which they are arranged. If we ignore all these properties the concept
of set is transformed into a more general concept: to each individual
element of the set there now corresponds only a ‘“‘unit’’ and the set be-
comes but a collection of units. The new concept formed by way of
abstraction will, therefore, be identical for any two sets which are
equivalent. This concept we call ‘‘the cardinal number of the set.”

The method of defining by ‘“‘way of abstraction” through assigning to
a given concept a meaningless symbol as just done in the construction of
cardinal numbers, is open to objections from the viewpoint of the gen-
eral theory of definition. To such objections it may be retorted that
we could just as well have singled out a particular set and defined it as

8 If, as in this section, the number of elements contained in a set is finite, one proves by an
arithmetical demonstration (though not a very simple one) that it is not necessary to make
several attempts. One attempt with a negative result implies that any attempt to establish
a one-to-one correspondence will yield a negative result. The property of infinite sets
stressed in section 3 involves that the same does not hold with respect to such sets: in com-
paring infinite sets one has to prove indeed that any attempt leads to a negative result, while
an individual failure is insignificant.
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the cardinal number of all equivalent sets. Thus, we could have desig-
nated the set consisting of the sun and the moon as the representative of
all pairs; in other words, as the cardinal number 2. For the cardinal
number 5, we could have chosen the set of continents. It is obvious
that, apart of its inconvenience, such a procedure has to be declined be-
cause of its arbitrariness. Nevertheless this method may be employed
by using the concept of ordinal number (see Chapter II), or by the in-
ductive derivation of numbers in which a cardinal number 7 is defined
as the set of all the numbers (0, 1, 2, ..., 7 — 1) preceding it. For this
purpose, among many others, it is convenient to introduce the cardinal
number 0 (zero) as the cardinal number of a set without any elements.
Let us return, however, to our analysis of the transition from sets to
cardinal numbers. I do not wish to approach this problem from the
general philosophical point of view. We should remember that in
mathematics the formation of concepts by definition through abstrac-
tion is very common. Thus we ascribe to all (oriented) lines parallel to
one another a common ‘‘direction.”” Likewise, similar plane figures are
said to possess a common geometric ‘“form.” Allintegers which are con-
gruent with respect to a given modulus (see Chapter III) define a com-
mon ‘“‘number-class.” All “equivalent” fundamental sequences of ra-
tional numbers represent the same real number. Let us clarify the
basis for this method of definition and supply its logical justification!
The Greek logicians (especially Aristotle [384-322 B.C.]) as well as
those of later periods until two generations ago did not pay sufficient at-
tention to the great differences between the possible predicates which may
be associated with various subjects. Their analysis of predication was
mistakenly based upon the grammatical forms which propositions assume
in language. From the grammatical point of view the propositions
“My brothers are stubborn” and ‘“My brothers are similar in appear-
ance,” have an identical form. Each of them has a subject and a predi-
cate. Traditional logic regarded all such predicates as qualities. The
first of these propositions does in fact associate the quality of stubborn-
ness with each of the brothers. On the other hand, it is evident that
the second proposition does not ascribe a quality to any of the brothers.
(This fact is very pointedly brought out in the anecdote about a woman
who, upon visiting a friend who had just given birth to twins, exclaimed,
“How similar your twins are! Especially the one on the right hand.”)
Such propositions are not concerned with the gualities of a single sub-
ject but refer to relations between two or more subjects which are of
equal significance from a logical point of view. (Moreover, a proposi-
tion like “I love my children’ also expresses a relation between the two
subjects “I” and ‘“my children.””) We are concerned, therefore, not
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only with ordinary predication which may be expressed as a proposi-
tional function of one variable (e. g., x is beautiful) but with proposi-
tional functions of two variables (x resembles y) or of three variables (x
is between y and z), etc. A propositional function of one variable is
said to be a quality; in the other cases we have a relation of two, three
etc., terms.”

The most prominent relations in mathematics are those that possess
certain very definite properties. In the first place, a relation of two
terms may be symmetrical, non-symmetrical, or asymmetrical. Let us
denote any relation by the letter R, so that xRy means ‘“‘x stands in the
relation R to y.” R is a symmetrical relation if, for all values of x and
¥, xRy implies yRx, that is to say, if the relation is reciprocal. The rela-
tions of similarity and parallelism are, thus, symmetrical. R is an
asymmetrical relation if the truth of xRy implies the falsehood of yRx.
Thus, ‘“‘x is the father of y’’ or “‘x is smaller than y’’ or ‘‘x is to the left of
y"’ are asymmetrical relations. A relation which is not symmetrical
need not necessarily be asymmetrical. “x is the brother of y” is
neither symmetrical nor asymmetrical as the instances, ‘“Moses is the
brother of Aaron’’ on the one hand, and ‘“Moses is the brother of Mir-
iam’’ on the other, indicate.

A relation R is called fransitive if xRy and yRz together imply xRz.
“x is a descendant of ¥’ and ‘““x is smaller than ¥’ are transitive; but
“‘x is the son of y”’ is not transitive. Similarly, the relation of similarity
in geometry is transitive, but not similarity in its common usage as de-
noting resemblance. Children are often said to resemble both parents
though the parents do not resemble one another.

A relation R which is symmetrical as well as transitive relates any ob-
ject of its “‘field”’ to itself (provided that the object stands in the relation
to at least one object of the field). In other words, xRx is true for any
x of the field. In fact, xRy implies yRx by the symmetry of R, and
then xRx follows by the transitivity of R.

The relations that are of greatest importance in mathematics are
those which are both symmetrical and transitive, and those which are
transitive but asymmetrical. The importance of the second type of
relation, ‘‘relations of order,” will be discussed in section 3. Here we
shall be concerned with those relations which possess both symmetry
and transitivity, or, as they are called, the equivalence-relations. (The
word ‘“‘equivalence’” is taken here in a broader sense than that used
above.)

7 The importance of relations is brought out especially in the articles and books of Bert-
rand Russell. See, e. g., also: Studies in the Problems of Relations. University of California
Publications in Philosophy, Vol. 13 (1930).
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We consider a given equivalence-relation, R, and denote by K a set
such that any two of its elements, a and b, stand in the relation aRb. In
this case any element ¢ of K may be conceived as a ““type’’:the typeofa
with respect to the relation R. Let us explain this in detail: Every
property which, if belonging to a, belongs also to any object related to a
by R, is “typical with respect to the relation R.” Consequently, any
property which is typical with respect to R and belongs to some element
of K, belongs also to every other element in K. The set K may, there-
fore, be regarded as representing properties which are typical with
respect to R. We shall consider a few examples.

If by R we refer to the relation of directed parallelism and we define
K as the set of all directed straight lines in space parallel to a given
line, the common direction of the lines in K is the type of each of them
with respect to R. Likewise, by means of the relation of similarity be-
tween plane figures, which is also an equivalence-relation, we can derive
from a given polygon the concept of a certain polygonal “form.” The
relation of congruence modulo g (where g is any given natural number
above 1) forms from a given integer the concept of a “‘congruence-class”
mod. g.

With this in mind, if we return to the relation of equivalence between
sets in the narrow sense described earlier in this section, we see that the
concept of cardinal number evolves from a set as its type with respect
to the relation of equivalence. For example, the number 5 is the type
formed with respect to the relation of equivalence by the set of the
fingers of one hand.

It is also possible to define the type as the aggregate of all objects re-
lated to a given object by the relation R. The cardinal number of a
given set is, then, the collection of all sets equivalent to this set. This
is the definition of Frege (1848-1925) and Bertrand Russell. Its ad-
vantage is that it is formed in accordance with the traditional Aristote-
lian theory by means of genus proximum and differentia specifica. On
the other hand, it possesses the disadvantage that it involves us in cer-
tain logical paradoxes. As a result, Frege despaired of making his
theory consistent, whereas Russell, in order to save his definition, set
out to construct a new theory of logic: the theory of types.

3. The Ordering of Numbers According to Magnitude

To define the cardinal numbers 1, 2, 3, . . ., we employed the relation
of equivalence. To arrange them in their usual order, according to
their magnitude, we must employ another relation between sets which
is transitive, but unlike equivalence is not symmetrical; in fact, it is
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asymmetrical. If a set K contains only part of the elements of L, we
say that the cardinal number of K is “‘smaller’”’ than that of L. If we
further consider that every set which is equivalent to K has, according
to our definition, the same cardinal number as K, we can forego the
condition that the elements of K belong actually to L and substitute the
following definition:

The (finite) cardinal number & of K is smaller than the cardinal num-
ber [ of L (denoted by % < /) if K is equivalent to a proper subset (pat-
tial set) of L. (The word “proper’” emphasizes the fact that the subset
in question contains only part of the elements of L, not all; the em-
phasis is necessitated by the fact that it is possible, even convenient for
certain purposes, to regard every set as a subset of itself.) The same
relation between % and / may also be expressed in the form: 1is greater
than k (I > k).

The relation R “x is equivalent to a proper subset of ¥’ is, obvi-
ously, transitive and asymmetrical. These two properties are neces-
sary in order to form what in science as well as in common usage is
known as an order-relation. By means of the relation just defined the
numbers may be ordered according to magnitude.

At this point, it should be observed that nowhere in the previous
section was it assumed, either explicitly or implicitly, that the sets under
consideration contain only a finite number of elements. However, the
last definition requires such a limitation. We have made use of the
asymmetrical nature of the defined relation R; that is to say, the prop-
erty that with respect to two sets x and y, xRy and yRx are contradic-
tory. This obviously implies that no set is equivalent to a proper sub-
set of itself or to a proper subset of an equivalent set. This fact
known to every child from daily experience, is rigorously proved in
arithmetic, but only in so far as finite sets are concerned. The property
does not hold when a set contains infinitely many elements, as in the
case of the set of all natural numbers 1, 2, 3, ... This may be shown in
the following way.

Let us associate with the set IV of all natural numbers the subset M
that contains the natural numbers above 1. We establish a one-to-
one correspondence by the rule: With every number # of N we asso-
ciate the number # 4 1 of M, or in the reverse direction, to every num-
ber m of M we relate the number m — 1 of N, as illustrated by the
following scheme.

N:
M:
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Another and seemingly more concrete example is the following. Let
us imagine a sack containing infinitely many oranges, so that to each
natural number there corresponds a single orange which is marked with
a tag bearing that number. Let us further imagine another sack of the
same kind. We take the oranges from the first sack and arrange them
in the order of the numbers on their tags, 1, 2, 3, ... From the second
sack we take nuly the oranges marked with even numbers 2, 4, 6, ...
and arrange them also in the order of magnitude of the corresponding
numbers. We then match orange 1 of the first sack against orange 2 of
the second, orange 2 of the first sack against orange 4 of the second, etc.
In general, if a is any natural number, we match orange a of the first
sack against orange 2a of the second. We thus establish a one-to-one
correspondence between the oranges of the first sack and “half”’ of those
in the second. The correspondence indicates the equivalence of the
set of all natural numbers and that of the positive even integers. This
means that the set of all natural numbers is equivalent to a proper sub-
set of itself which is formed by removing infinitely many of the original
elements. In the latter respect this example is even more far-reaching
than the previous one.

These examples show that if we take into consideration infinite sets,
the relation ‘“‘x is equivalent to a proper subset of y’’ is not asymmetri-
cal. The cardinal numbers of infinite sets cannot be ordered, there-
fore, by this method.



