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PREFACE

The third volume of Vibro-Acoustics includes three parts plus errata for
Volumes I and II. The first part of the Volume III presents the problems
to each chapter. The second part of the volume lists the solutions to the
problems. A few problems have been added as compared to the original
texts in Volumes I and II.

A summary of some basic equations presented in Volumes I and II are
given in Part 3 of Volume II1.

Anders C. Nilsson
Lotorp, Sweden, March 2014
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PART 1 PROBLEMS






Part 1  Problems 3
Chapter 1

1.1 Determine the energy dissipated over one period for a simple mass-
spring system if the losses are a) viscous and b) hysteretic. Assume that
the displacement of the mass is described by z(t) = xg sin(wt).

1.2 The displacement of the mass of a simple mass-spring system is
given by z(t) = z¢sin(wt). Determine the force required to maintain this
motion if the damping force is due to i) viscous losses and ii) frictional
losses. In a diagram show the force as function of displacement. Make some
apropriate assumption concerning the magnitude of the properties m, ko, ¢
and Fjy.

1.3 The mass in Fig.1-1.3-1 is excited and is thereafter left to oscillate
freely. Determine the displacement as function of time if the losses are as-
sumed to be frictional. Assume that the displacement is z( and the velocity
zero at time ¢t = 0.

ddds

Fig. 1-1.3-1

AR
R

1.4 Show that for a critically damped system the displacement can be
zero for time ¢ being finite and that this can only happen at one instance.

1.5 The mass of a simple mass-spring system is excited by an impulse
I at time intervals 7. Determine the response of the mass. Consider only
harmonic solutions i.e. assume that the excitation process was started at
t = —oo. The system is lightly damped.

1.6 A mass-spring system is at rest for + < 0. The mass is excited
by a force F(t) at t = 0. The force is given by F(t) = Fy for 0 < t < T}
Fit)=0fort<0Oandt>T.

Determine the response of the mass. In particular consider the cases for
which the product w,T" is equal to m/2, m and 2n with w, defined in eq.
(1-14). Assume that ST < 1. For definitions see Section 1.2.

1.7  For the problem described in Example 1.6 determine the maximum
amplitude as function of 7'

1.8 A function z(t) is expanded in a Fourier series as

o0
a
z(t) = 50 + Z (an cos wpt+b, sinwyt); w, =2mn/T; n=1,2,---

n=i
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Show that the coefficients a,, and b,, are

2 (T 2 (T
Gy, = —J x(t) cos(wpt)dt; by = ——J z(t) sin(wpt)dt
T 0 T 0

1.9 A harmonic force F(t) with the period T is exciting the mass of
a simple 1-DOF system. Determine the displacement of the mass if

F(t)y=F({t+T)= G0/2+ZG,,COb wnt) ZH sin(wpt); wp = 2nn/T
n=1

Assume the losses to be viscous.

1.10 Solve Problem 1.5 by expanding the force and response in Fourier
series.

1.11 A 1-DOF system is excited by a force F(t) = Fy-e'!. Determine
the time averages of kinetic and potential energies as well as the time average
of the input power to the system. Assume that the equation governing the
motion of the system is

mi+kr=F; k=ko(l+ i)

According to eq. (1-81) d = 2wm/f3/ko. Since § = ¢/(2m) ¢ is written
d = cw/ky. Discuss the difference between viscous and structural damping.

1.12 A 1-DOF system is governed by the equation ma + cx + koxr =
F(t). A function h(t — 7) satisfies the equation mh + ch + koh = 8(t — 7)
show that z(t) is given by

t
z(t) = J_ d7F(T)h(t — 7).

1.13 The displacement of a 1-DOF system can be described in two
different ways as

i) m& + kx = F; k = ko(1 + 26)

il) m& +ct + kor = F

Assume F' = Fy - e™t and z = z( - €t and derive the input power to
the system for both cases. Show in the first case that the input power is
proportional to the potential energy of the system and in the second case
to the kinetic energy.



Part 1 Problems 5
Chapter 2

2.1 Determine the FT of the function
h(t) = exp(—pt) - sin(wnt)/(mwy,) for t > 0
h(t) =0fort <0

where w? = wi — 4% and B = w3d/(2w) > 0.
2.2 A periodic signal z(t) = z(t + T) is a function of time as

z(t)=Afor0<t<T/2and z(t) =0for T/2<t<T

Determine the autocorrelation function and power spectral density of

the signal.
2.3 The frequency response function H(w) of a 1-DOF system is
1 1
H =
) “mw? +k m[(wg — w?) + iwjd]

Show that for § < 1 the inverse F'T of H is equal to
h(t) = exp(—woptd/2) - sin(wopt)/(mwp)

2.4 The mass of a mass-spring system is excited by the force defined
in Example 2.2. Determine the time average of the velocity squared for the
mass m. The spring constant is

k = ko(1 + i6).

2.5 Determine the autocorrelation functions for band-pass white noise
and low-pass white noise. In the first case G, (f) = a for 0 < fy — B/2 <
f < fo+ B/2 and in the second case G (f) =a for 0 < f < B.

2.6 A force F(t) is applied to the mass m of a mass-spring system.
The complex spring constant is given by & = kg(1 + id). The force is
F(t) = Asin(wit) 4+ &(t), where £(t)is a random signal with the one sided
power spectral density Gge = A?/(2wg) where wg = ko/m.

Determine the time average of the velocity squared of the mass.

2.7 Determine the time averages of the potential and kinetic energies
of a mass-spring system for which the mass is excited by a force F(t) =
Fy - sin(wt).

2.8 Determine the time average of the velocity squared of the mass of
a lightly damped mass-spring system excited by a force characterised by an
exponential autocorrelation function, i.e. having a one sided power spectral
density
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Grr(w) = %-

2.9 A mass-spring system is mounted on a foundation as shown in
Fig.1-2.9-1 The point mobility of the foundation is Y;. Determine the point
mobility Y in the excitation point.

F(f) 2.10 For the system described in Example
2.9 determine the one sided power spectral den-
sity of the power transmitted to the foundation.
The power spectral density of the force exciting the
mass is constant and equal to Gpp. The point mo-
bility of the foundation is Y;. Determine also the
time average of the power input to the foundation

7777z if Yy ois real and much smaller than unity and in
Fig. 1-2.9-1 addition independent of frequency.

2.11 The mass of a mass-spring system is excited by a force F(t),
with the one-sided power spectral density Gpp. The response of the mass
is z(t) = z(t) + y(t) where y(t) is due to extraneous and random noise. The
one-sided power spectral density of the random signal y is Gyy. The FT of
the response due to the FT of the force can be written as & = H F where H
is the frequency response function for the system. Determine the coherence
function between the FT of the force and the FT of the displacement z.

2.12 Determine the time average of the power input to 1-DOF system

= —ij dw: wSFp(w) - Im(H)

20 ) e
when the frequency response function is defined according to eq. (2-15) as
1 1

H(w) = =
W) —mw? +iwec+ ko m(wl —w? + 2ipw)

o
2.13 A function z(t) is written z(t) = Eo—i— E (ay cos wyt + by, sinw,t)
=1

in the time interval —7/2 < t < T'/2. Show that as 7" — oc the function
can be written in integral form as

1 [ , oc_ |
z(t) = —J dw - #(w)e™! where #(w) = J dt - x(t)e !
2n )_ o .
2.14 Show that E[i%(t)] = — d*Rra
. / dr? |, _,



Part 1 Problems 7

Chapter 3

3.1 An infinite beam is oriented along the z-axis in a coordinate sys-
tem. The displacement along the z-axis is £ = A - sin(wt — k) where k; is
the wave number for quasi-longitudinal waves. The width of the beam is b
and its height h. Determine the displacement perpendicular to the z-axis of
the beam. Assume that o, and o, are equal to zero in the beam.

3.2 Determine the resulting kinetic energy in the beam of Problem
3.1. Consider only the effects due to quasi L-waves.

3.3 An L-wave is propagating in an infinite and homogeneous beam
oriented along the r-axis of a coordinate system. The resulting displacement
is defined by f(x — ¢;t). Determine the kinetic and potential energies plus
the energy flow due to this wave.

3.4 A semi infinite and homogeneous beam with constant cross sec-
tion area S is oriented along the z-axis of a coordinate system. At x =0
the beam is excited by a force F'(t) in the direction of the positive z-axis.
Determine the displacement in the beam. Consider only L-waves. As an
example let the force be given by F(t) = Fjsinwt.

3.5 Torsional waves are propagating in an infinite cylindrical and ho-
mogeneous shaft with radius R. Due to the wave motion the torsional angle
O varies as © = Oysin(kiz — wt). Determine the potential and kinetic en-
ergies per unit length of the shaft as well as the energy flow in the shaft
which is oriented along the z-axis of a coordinate system.

3.6 Flexural waves are propagating in an infinite and homogeneous
beam oriented along the x-axis of a coordinate system. The displacement of
the beam is given by w(x,t). Determine the potential energy per unit length
of the beam based on the general expression eq. (3-17) and the definition
of the strain in eq. (3-72). Neglect shear effects.

3.7 The deflection 7 of an infinite and homogeneous string oriented
along the x-axis is at ¢ = 0 equal to n(x,0) = cos(nz/L) for —L/2 <z < L/2
otherwise zero.

The string is at rest at £ = 0. Determine the displacement of the string
when it is released at t = 0. Neglect the losses.

3.8 A thin, infinite and homogeneous beam is oriented along the -
axis in a coordinate system. The mass per unit length is m’ and its bending
stiffness D’. For t < 0 the beam is at rest having the lateral displacement
exp[—(z/2a)?]. The beam is released at t = 0. Determine the displacement
of the beam for ¢ > 0. Compare the discussion in Section 3.8.
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3.9 An attempt is made to measure the energy flow in a thin ho-
mogeneous beam by means of just one accelerometer. The material and
geometrical parameters of the beam are known.

The bending stiffness and wavenumber are denoted D’ and k. Losses
are neglected. In the first case the lateral displacement of the beam, which
is oriented along the x-axis of a coordinate system, is equal to w(x,t) =
A - expli(wt — kz)]. Determine the energy flow in the beam as function of
the time average of the velocity squared measured at the point xz = .

In the second case the near field can not be neglected. The displacement
is w(xz,t) = A-exp(iwt) - [exp(—ikz) — i - exp(—kx)]. Determine the ratio
between the actual energy flow and the energy flow estimated by means of
the velocity squared measured by means of the accelerometer at the point
r = XI.

In the third case the near field but not a reflected field can be neglected.
The displacement is given by w(z,t) = A - exp(iwt)  [exp(—ikz) + X -
exp(ikz)]. Again calculate the ratio between the actual and measured en-
ergy flows at the point x = xy.

3.10 Show that the bending moment per unit length induced by shear
in an orthotropic plate is given by eq. (3-132) as

0w
]\/I;.y = -—\/D;L-Dy . (1 — \/V:L-Vy) : 6;1;—8y

The plate is oriented in the z-y-plane of a coordinate system.

3.11 An L-wave is propagating in an infinite beam oriented along the
z-axis of a coordinate system. The displacement is £(z,t) = A - exp|i(wt —
kiz)]. Show that the time average of the energy flow II is II = ¢;& where
E, is the time average of the total energy per unit length of the beam and
¢; the phase velocity of the wave.

3.12 Show that the intensity of L-waves propagating in the beam of
Problem 3.11 is given by I, = —0,-0&/0t where £ is the displacement in the
beam. Start by considering the total energy per unit volume of the beam.

Chapter 4

4.1 A T-wave is for # < 0 travelling in a thin semi infinite plate.
The plate is oriented in the z-y-plane of a coordinate system. The wave is
travelling towards a straight edge at x = 0. The angle of incidence is /3.
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The impedance of the edge is infinite. Determine the relative amplitudes of
the reflected L- and T-waves at the edge.

4.2 Two semi infinite plates are oriented in the z-y-plane of a coordi-
nate system. The junction between the plates is defined by the line z = 0.
Plate 1 has the thickness h and plate 2 has the thickness H. An L-wave
is in plate 1 travelling towards the junction. The angle of incidence is «.
Determine the ratio between the incident energy flow and the energy flow
transmitted to plate 2.

4.3 Use eq. (4-51) to determine the wavenumber for travelling and
evanescent bending waves in a plate with thickness h. Include second order
terms. Determine also the energy flow due to a plane travelling bending
wave in the plate. Include second order terms in h.

4.4 Useeq. (4-49) to determine the wavenumber for quasi longitudinal
waves travelling in a plate. Include only terms of the first order as the plate
thickness approaches zero.

4.5 Determine the low and high frequency limits for the wavenumber
describing flexural waves propagating in a sandwich plate. Geometrical and
material parameters are given in Table 4-3 of Section 4.10.

4.6 A bending wave, w(z,t) is propagating in a plate. Use eq. (4-56)
to show that the resulting bending moment per unit width of the plate is
—D&*w/0x? and the corresponding shear force —Dd%w/dz%. The plate is
oriented in the z-y-plane of a coordinate system.

4.7 A bending wave, w(x,t) = ngexpli(wt — Kx)] is propagating in
a plate with the thickness h. Determine the intensity in the plate. Use
eq. (4-56) in combination with the definition of the intensity. The plate is
oriented in the z-y-plane of a coordinate system.

4.8 Determine the shear stress in a plate with thickness h as function
of the distance y from the neutral plane of the plate. Use the result of eq.
(4-46).

4.9 The wave number k, for a wave propagating along a so called
Timoshenko beam is in eq. (4-32) given as

1
s = i\/ 2 [(k? +k7/Ty) £ \/4,.;4 + (kf — k§/T)?

In the high frequency limit k, should approach k,, the wavenumber for

Rayleigh waves. Determine the coefficient 7}, for lim k, = k,.
Ww—oo

4.10 According to Section 4.6 a Rayleigh wave propagating along the
z-axis in a semi infinite solid can for y < 0 be described by the potentials
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¢ = By expla(y + h/2)] expli(wt — kyx)]/2
¥, = Cyexp|B(y + h/2)] expli(wt — kyx)]/2
where Cy/B) = i - exp[h/2(a — B)][k2 — k2(1 + v)]/(k:5)

and k, is the wavenumber for Rayleigh waves. The parameters a and [ are

B=1/kI—k} a=,[k2—K?

Show that o, = 0 and 7, = 0 for y = 0, i.e. on the surface of the semi infi-
nite solid. The surface of the structure is in the z-z-plane of the coordinate
system. The distance from the surface is given by y.

4.11 Indicate a procedure to determine the intensity induced by a
Rayleigh wave travelling in a semi-infinite solid. Use eq. (4-68).

Chapter 5

5.1 Two semi infinite beams are connected at right angels. The junc-
tion between the beams is hinged i.e. no bending moment can be transfered
from one beam to the other. A longitudinal wave is incident on the junction
in beam 1. Determine the transmitted and reflected energy flows as function
of the incident energy flow. The two beams are identical, width b, height h,
Young’s modulus £, Poisson’s ratio v and density p.

5.2 The incident wave in Problem 5.1 is a flexural wave. Determine
the transmitted and reflected energy flows.

5.3 At a junction n identical semi infinite plates are connected along
a straight line. In one of the plates a plane flexural wave is incident on the
junction (normal incidence). Determine the attenuation of the energy flow
to any of the other plates. Neglect the translatory motion of the junction.

5.4 A longitudinal wave is propagating in Beam 1 towards the dis-
continuity 2 shown in Fig.1-5.4-1. Determine the ratio between the incident
energy flow in Beam 1 and the transmitted energy flow to Beam 3.

L @D & @ H h @
=0 =1L
Fig. 1-5.4-1

5.5 Two semi infinite beams oriented along the same axis are con-
nected by means of an elastic interlayer as shown in Fig.1-5.5-1. A longitu-
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dinal wave is incident on the interlayer. Determine the attenuation across
the junction. Consider only longitudinal waves.

1

Fig. 1-5.5-1

5.6 A flexural wave is propagating in a beam towards a blocking mass
as shown in Fig.1-5.6-1. A flexural wave is transmitted across the blocking
mass. Determine the ratio between incident and transmitted energy flows.
It is sufficient to define incident and transmitted waves and the boundary
conditions necessary for solving the problem. Assume the blocking mass to
be rigid. Its mass is M and its rotational mass moment of inertia .J. The
width of the beam is b and its height h.

e

]

Fig. 1-5.6-1
5.7 An evanescent flexural wave on a beam is described by
w(x,t) = A-expli(wt + konz/4) — Koz]

where £ is the real part of the wave number and 7 the loss factor. Determine
the energy flow in the beam due to this wave.

5.8 A thin infinite plate is excited by a point force F = Fj) - exp(iwt)
perpendicular to the surface of the plate. Determine the far field displace-
ment of the resulting flexural wave.

5.9 An infinite plate is excited by a point force. The displacement in
the far field is given by the result of Example 5.8. Neglecting the losses in
the plate show that the power transmitted to the far field is equal to power
input at the excitation point.

5.10 Two semi-infinite plates of different thicknesses are joined to-
gether along a straight line. The joint is allowed to rotate only. A flexural
plane wave, unit amplitude, is incident on the junction. The angle of inci-
dence is . Determine the amplitude R of the reflected wave and show that
|R| = 1 when no propagating wave is transmitted across the junction.



