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Preface

There is a canard that every textbook of algebraic topology either ends with
the definition of the Klein bottle or is a personal communication to J. H. C.
Whitehead. Of course, this is false, as a glance at the books of Hilton and
Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard does reflect
some truth. Too often one finds too much generality and too little attention
to details.

There are two types of obstacle for the student learning algebraic topology.
The first is the formidable array of new techniques (e.g., most students know
very little homological algebra); the second obstacle is that the basic defini-
tions have been so abstracted that their geometric or analytic origins have
been obscured. I have tried to overcome these barriers. In the first instance,
new definitions are introduced only when needed (e.g., homology with coeffi-
cients and cohomology are deferred until after the Eilenberg—Steenrod axioms
have been verified for the three homology theories we treat—singular, sim-
plicial, and cellular). Moreover, many exercises are given to help the reader
assimilate material. In the second instance, important definitions are often
accompanied by an informal discussion describing their origins (¢.g., winding
numbers are discussed before computing n,(S'), Green’s theorem occurs
before defining homology, and differential forms appear before introducing
cohomology).

We assume that the reader has had a first course in point-set topology, but
we do discuss quotient spaces, path connectedness, and function spaces. We
assume that the reader is familiar with groups and rings, but we do discuss
free abelian groups, free groups, exact sequences, tensor products (always over
Z), categories, and functors.

I am an algebraist with an interest in topology. The basic outline of this
book corresponds to the syllabus of a first-year’s course in algebraic topology
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designed by geometers and topologists at the University of Hlinois, Urbana,
other expert advice came (indirectly) from my teachers, E. H. Spanier and S.
Mac Lane, and from ). F. Adams’s Algebraic Topology: A Student’s Guide. This
latter book is strongly recommended to the reader who, having finished this
book, wants direction for further study.

I am indebted to the many authors of books on algebraic topology, with
a special bow to Spanier’s now classic text. My colleagues in Urbana, es-
pecially Ph. Tondeur, H. Osborn, and R. L. Bishop, listened and explained.
M.-E. Hamstrom took a particular interest in this book; she read almost the
entire manuscript and made many wise comments and suggestions that have
improved the text; my warmest thanks to her. Finally, I thank Mrs. Dee
Wrather for a superb job of typing and Springer-Verlag for its patience.

Joseph J. Rotman

Addendum to Second Corrected Printing

Though I did read the original galleys carefully, there were many errors that
eluded me. I thank all who apprised me of mistakes in the first printing,
especially David Carlton, Monica Nicolau, Howard Osborn, Rick Rarick,
and Lewis Stiller.

November 1992 Joseph J. Rotman

Addendum to Fourth Corrected Printing

Even though many errors in the first printing were corrected in the second
printing, some were unnoticed by me. I thank Bernhard J. Elsner and Martin
Meier for apprising me of errors that persisted into the the second and third
printings. I have corrected these errors, and the book is surely more readable
because of their kind efforts.

April, 1998 Joseph Rotman



To the Reader

Doing exercises is an essential part of learning mathematics, and the serious
reader of this book should attempt to solve all the exercises as they arise. An
asterisk indicates only that an exercise is cited elsewhere in the text, sometimes
in a proof (those exercises used in proofs, however, are always routine).

I have never found references of the form 1.2.1.1 convenient (after all, one
decimal point suffices for the usual description of real numbers). Thus, Theorem
7.28 here means the 28th theorem in Chapter 7.
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CHAPTER 0

Introduction

One expects algebraic topology to be a mixture of algebra and topology, and
that is exactly what it is. The fundamental idea is to convert problems about
topological spaces and continuous functions into problems about algebraic
objects (e.g., groups, rings, vector spaces) and their homomorphisms; the
method may succeed when the algebraic problem is easier than the original
one. Before giving the appropriate setting, we illustrate how the method
works.

Notation

Let us first introduce notation for some standard spaces that is used through-
out the book.

Z = integers (positive, negative, and zero).
Q = rational numbers.

C = complex numbers.

I = [0, 1], the (closed) unit interval.

R = real numbers.

R" = {(x;,X;, ..., X,)|x; € R for all i}.

R" is called real n-space or euclidean space (of course, R" is the cartesian
product of n copies of R). Also, R? is homeomorphic to C; in symbols, R? ~ C.
If x =(x,,..., x,) € R", then its norm is defined by |[x| = , /Z:;l x? (when
n = 1, then | x| = |x|, the absolute value of x). We regard R" as the subspace
of R™*! consisting of all (n + 1)-tuples having last coordinate zero.

S"={xe R x| = 1}.
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S" is called the n-sphere (of radius 1 and center the origin). Observe that
S" < R"*!(as the circle S! < R?); note also that the O-sphere S° consists of the
two points {1, — 1} and hence is a discrete two-point space. We may regard
S" as the equator of S"*!:

§"=R"INS"™ = {(x1,..., Xps2) € S x,,, =0}

The north pole is (0,0, ..., 0, 1) e S"; the south pole is (0,0,...,0, —1). The
antipode of x = (x,, ..., x,,,) € S$"is the other endpoint of the diameter having
one endpoint x; thus the antipode of x is —x =(—x,,..., —x,,,), for the
distance from — x to x is 2.

D"={xeR" x| <1}.

D" is called the a-disk (or n-ball). Observe that S"* < D" c R"; indeed S" ! is
the boundary of D" in R”".

A" = {(x,,X3,..., X,s;) € R" " each x; > 0and ) x; = 1}.

A" is called the standard n-simplex. Observe that A is a point, A is a closed
interval, A? is a triangle (with interior), A3 is a (solid) tetrahedron, and so on.
It is obvious that A" & D", although the reader may not want to construct’ a
homeomorphism until Exercise 2.11.

There is a standard homeomorphism from $" — {north pole} to R", called
stereographic projection. Denote the north pole by N, and define o: $" — {N}
- R" to be the intersection of R" and the line joining x and N. Points on
the latter line have the form tx + (1 — ¢)N; hence they have coordinates
(tx(s ..., tx,, tx,+; + (1 — t)). The last coordinate is zero for t = (1 — x,,,,)”%;
hence

o(x) = (tx,, ..., tx,),

where t = (1 — x,,,)”!. It is now routine to check that ¢ is indeed a homeo-
morphism. Note that 6(x) = x if and only if x lies on the equator §"*.

Brouwer Fixed Point Theorem

Having established notation, we now sketch a proof of the Brouwer fixed point
theorem: if f: D" — D" is continuous, then there exists x € D" with f(x) = x.
When n = 1, this theorem has a simple proof. The disk D' is the closed interval
[—1, 17; let us look at the graph of f inside the square D! x D1,

! It is an exercise that a compact convex subset of R” containing an interior point is homeomor-
phic to D" (convexity is defined in Chapter 1); it follows that A", D", and I" are homeomorphic.
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Theorem 0.1. Every continuous f: D' — D' has a fixed point.

PRrOOF. Let f(—1) = a and f(1) = b. If either f(—1) = —1 or f(1) = 1, we are
done. Therefore, we may assume that f(—1) = a > —1and that f(1) = b < 1,
as drawn. If G is the graph of f and A is the graph of the identity function (of
course, A is the diagonal), then we must prove that GNA # . The idea is to
use a connectedness argument to show that every path in D! x D! from a to
b must cross A. Since f is continuous, G = {(x, f(x)): x € D'} is connected [G
is the image of the continuous map D' —+ D' x D! given by x+—(x, f(x))].
Define A = {(x, f(x)): f(x) > x} and B = {(x, f(x)): f(x) < x}. Note thata € A
and be B, so that A # (¥ and B# . If GNA = ¢, then G is the disjoint
union

G=AUB.

Finally, it is easy to see that both 4 and B are open in G, and this contradicts
the connectedness of G. O

Unfortunately, no one knows how to adapt this elementary topological
argument when n > 1; some new idea must be introduced. There is a proof
using the simplicial approximation theorem (see [Hirsch]). There are proofs
by analysis (see [Dunford and Schwartz, pp. 467-470] or [Milnor (1978)1);
the basic idea is to approximate a continuous function f: D" —» D" by smooth
functions g: D" — D" in such a way that f has a fixed point if all the g do; one
can then apply analytic techniques to smooth functions.

Here is a proof of the Brouwer fixed point theorem by algebraic topology.
We shall eventually prove that, for each n > 0, there is a homology functor H,
with the following properties: for each topological space X there is an abelian
group H,(X), and for each continuous function f: X — Y there is a homomor-
phism H,(f): H,(X) - H,(Y), such that:

H(gof)=H,(g)° H(f) (1

whenever the composite g o f is defined;

H, (1) is the identity function on H,(X), 2
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where 1y is the identity function on X;
H,(D""')=0 foralln>1; (3)
H,(S8")#0 foralln > 1. “4)

Using these H,’s, we now prove the Brouwer theorem.

Definition. A subspace X of a topological space Y is a retract of Y if there is
a continuous map? r: Y —» X with r(x) = x for all x € X; such a map r is called
a retraction.

Remarks. (1) Recall that a topological space X contained in a topological
space Y is a subspace of Y if a subset V of X is open in X if and only if
V' = XN U for some open subset U of Y. Observe that this guarantees that
the inclusion i: X & Y is continuous, because i }(U) = XN U is open in X
whenever U is open in Y. This parallels group theory: a group H contained
in a group G is a subgroup of G if and only if the inclusion i: H< G is a
homomorphism (this says that the group operations in H and in G coincide).

(2) One may rephrase the definition of retract in terms of functions. If
i: X < Y is the inclusion, then a continuous map r: Y — X is a retraction if
and only if

roi=1y.

(3) For abelian groups, one can prove that a subgroup H of G is a retract
of G if and only if H is a direct summand of G; that is, there is a subgroup K
of G with KNH =0and K + H = G (see Exercise 0.1).

Lemma 0.2. If n > 0, then S" is not a retract of D"**.

PROOF. Suppose there were a retraction r: D"*! — S"; then there would be a
“commutative diagram” of topological spaces and continuous maps

(here commutative means that r o i = 1, the identity function on §"). Applying
H, gives a diagram of abelian groups and homomorphisms:

H"(Dn+1)

H,(i) / \H..(r)

H,(S") 0 H,(S").

2 We use the words map and function interchangeably.
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By property (1) of the homology functor H,, the new diagram commutes:
H,(r) o H,(i} = H,(1). Since H,(D"*!) = 0, by (3), it follows that H,(1) = 0. But
H,(1) is the identity on H,(S"), by (2). This contradicts (4) because H,(S") # 0.

d

Note how homology functors H, have converted a topological problem
into an algebraic one.

We mention that Lemma 0.2 has an elementary proof when n = 0. It
is plain that a retraction r: Y — X is surjective. In particular, a retraction
r: D' - §° would be a continuous map from [ — 1,1] onto the two-point set
{+ 1}, and this contradicts the fact that a continuous image of a connected
set is connected.

Theorem 0.3 (Brouwer). If f: D" — D" is continuous, then f has a fixed point.

PRrOOF. Suppose that f(x) # x for all x € D*; the distinct points x and f(x) thus
determine a line. Define g: D" — 5" ! (the boundary of D") as the function

g(x)

assigning to x that point where the ray from f(x) to x intersects $" 1. Ob-
viously, x € $"7! implies g(x) = x. The proof that g is continuous is left as an
exercise in analytic geometry. We have contradicted the lemma. O

There is an extension of this theorem to infinite-dimensional spaces due to
Schauder (which explains why there is a proof of the Brouwer fixed point
theorem in [Dunford and Schwartz]): if D is a compact convex subset of a
Banach space, then every continuous f: D — D has a fixed point. The proof
involves approximating f — 1, by a sequence of continuous functions each of
which is defined on a finite-dimensional subspace of D where Brouwer’s
theorem applies.

EXERCISES

*0.1. Let H be a subgroup of an abelian group G. If there is a homomorphismr: G - H ..
withr(x) = xforall xe H,then G = H @ kerr. (Hint:If ye G, then y = r(y) +
(y—riy)
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0.2. Give a proof of Brouwer’s fixed point theorem for n = 1 using the proof of
Theorem 0.3 and the remark preceding it.

0.3. Assume, for n > 1, that H(S") = Z if i = 0, n, and that H,/(S") = 0 otherwise.
Using the technique of the proof of Lemma 0.2, prove that the equator of the
n-sphere is not a retract.

0.4, If X is a topological space hemeomorphic to D", then every continuous f: X - X
has a fixed point.

0.5. Let f,g: I - I x I be continuous; let f(0) = (a, 0) and f(1) = (b, 1), and let g(0) =
(0, ¢} and g(1) = (1, d) for some q, b, ¢, d € 1. Show that f(s) = g(t) for some s,
t € I; that is, the paths intersect. (Hint: Use Theorem 0.3 for a suitable map
I x I -1 x L) (There is a proof in [Maehara]; this paper also shows how to
derive the Jordan curve theorem from the Brouwer theorem.)

0.6. (Perron). Let 4 = [a,] be a real n x n matrix with a; > 0 for every i, j. Prove
that 4 has a positive eigenvalue 1; moreover, there is a corresponding eigenvector
x ={xy, X3, ..., x,) (Le., Ax = Ax) with each coordinate x; > 0. (Hint: First define
o:R" >R by a(x,,x;,...,x,) = Y-y x;, and then define g: A"™' - A""' by
g(x) = Ax/a(Ax), where x € A"~' — R"is regarded as a column vector. Apply the
Brouwer fixed point theorem after showing that g is a well defined continuous
function.)

Categories and Functors

Having illustrated the technique, let us now give the appropriate setting for
algebraic topology.

Definition. A category ¥ consists of three ingredients: a class of objects, obj €;
sets of morphisms Hom(A, B), one for every ordered pair 4, B € obj ¢; com-
position Hom(A4, B) x Hom(B, C) —» Hom(4, C), denoted by (f, g)~g o f, for
every A, B, C € obj ¥, satisfying the following axioms:

(1) the family of Hom(A, B)’s is pairwise disjoint;
(i1) composition is associative when defined;
(iii) for each A € obj ¥, there exists an identity 1, € Hom(A4, 4) satisfying
1,0 f = fforevery f € Hom(B, A), all Be obj ¥,and g o 1, = g forevery
g € Hom(4, C), all C € obj €.

Remarks. (1) The associativity axiom stated more precisely is: if f, g, h are
morphisms with either ho(go f) or (hog)o f defined, then the other is
also defined and both composites are equal.

(2) We distinguish class from set: a set is a class that is small enough
to have a cardinal number. Thus, we may speak of the class of all topological
spaces, but we cannot say the set of all topological spaces. (The set theory we
accept has primitive undefined terms: class, element, and the membership
relation e. All the usual constructs (e.g., functions, subclasses, Boolean opera-
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tions, relations) are permissible except that the statement x € A is always false
whenever x is a class that is not a set.)

(3) The only restriction on Hom(A, B) is that it be a set. In particular,
Hom(A, B) = ¢F is allowed, although axiom (i11) shows that Hom(A, 4) # &
because it contains 1,.

(4) Instead of writing f € Hom(A, B), we usually write f: A — B.

EXAMPLE 0.1. € = Sets. Here obj € = all sets, Hom(4, B) = {all functions
A — B}, and composition is the usual composition of functions.

This example needs some discussion. Our requirement, in the definition of
category, that Hom sets are pairwise disjoint is a reflection of our insistence
that a function f: A — B is given by its domain A, its target B, and its graph:
{all (a, f(a)): ae A} = A x B. In particular, if A is a proper subset of B, we
distinguish the inclusion i: 4 & B from the identity 1, even though both
functions have the same domain and the same graph; i e Hom(A4, B) and
1, € Hom(A4, A4), and so i # 1,. This distinction is essential. For example, in
the proof of Lemma 0.2, H,(i) = O and H,(1,) # Owhen 4 = $"and B = D"**.
Here are two obvious consequences of this distinction: (1) If B < B’ and
f: A - B and g: A - B are functions with the same graph (and visibly the
same domain), then g = i o f, where i: B & B’ is the inclusion. (2) One may
form the composite h o g only when target g = domain h. Others may allow
one to compose g: A — B with h: C —» D when B ¢ C; we insist that the only
composite defined here is h o i o g, where i: B & C is the given inclusion.

Now that we have explained the fine points of the definition, we continue
our list of examples of categories.

ExaMpLE 0.2. € = Top. Here obj ¥ = all topological spaces, Hom(A4, B) =
{all continuous functions 4 — B}, and composition is usual composition.

Definition. Let ¥ and &/ be categories with obj ¥ < obj /. If A, Be obj ¥,
let us denote the two possible Hom sets by Homg(A, B) and Hom (A, B).
Then € is a subcategory of .« if Homg(A, B) « Hom (4, B) for all A, Be
obj € and if composition in ¥ is the same as composition in #; that is, the
function Homg(A, B) x Homg(B, C) - Homg(4, C) is the restriction of the
corresponding composition with subscripts /.

ExaMpPLE 0.2". The category Top has many interesting subcategories. First, we
may restrict objects to be subspaces of euclidean spaces, or Hausdorff spaces,
or compact spaces, and so on. Second, we may restrict the maps to be differ-
entiable or analytic (assuming that these make sense for the objects being
considered).

ExaMPLE 0.3. ¢ = Groups. Here obj ¢ = all groups, Hom(4, B) = {all homo-
morphisms 4 — B}, and composition is usual composition (Hom sets are so
called because of this example).



