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PREFACE

Through six editions now, Mathematical Methods for Physicists has provided all the math-
ematical methods that aspirings scientists and engineers are likely to encounter as students
and beginning researchers. More than enough material is included for a two-semester un-
dergraduate or graduate course.

The book is advanced in the sense that mathematical relations are almost always proven,
in addition to being illustrated in terms of examples. These proofs are not what a mathe-
matician would regard as rigorous, but sketch the ideas and emphasize the relations that
are essential to the study of physics and related fields. This approach incorporates theo-
rems that are usually not cited under the most general assumptions, but are tailored to the
more restricted applications required by physics. For example, Stokes’ theorem is usually
applied by a physicist to a surface with the tacit understanding that it be simply connected.
Such assumptions have been made more explicit.

PROBLEM-SOLVING SKILLS

The book also incorporates a deliberate focus on problem-solving skills. This more ad-
vanced level of understanding and active learning is routine in physics courses and requires
practice by the reader. Accordingly, extensive problem sets appearing in each chapter form
an integral part of the book. They have been carefully reviewed, revised and enlarged for
this Sixth Edition.

PATHWAYS THROUGH THE MATERIAL

Undergraduates may be best served if they start by reviewing Chapter 1 according to the
level of training of the class. Section 1.2 on the transformation properties of vectors, the
cross product, and the invariance of the scalar product under rotations may be postponed
until tensor analysis is started, for which these sections form the introduction and serve as

X1



xii Preface

examples. They may continue their studies with linear algebra in Chapter 3, then perhaps
tensors and symmetries (Chapters 2 and 4), and next real and complex analysis (Chap-
ters 5-7), differential equations (Chapters 9, 10), and special functions (Chapters 11-13).

In general, the core of a graduate one-semester course comprises Chapters 5-10 and
11-13, which deal with real and complex analysis, differential equations, and special func-
tions. Depending on the level of the students in a course, some linear algebra in Chapter 3
(eigenvalues, for example), along with symmetries (group theory in Chapter 4), and ten-
sors (Chapter 2) may be covered as needed or according to taste. Group theory may also be
included with differential equations (Chapters 9 and 10). Appropriate relations have been
included and are discussed in Chapters 4 and 9.

A two-semester course can treat tensors, group theory, and special functions (Chap-
ters 11-13) more extensively, and add Fourier series (Chapter 14), integral transforms
(Chapter 15), integral equations (Chapter 16), and the calculus of variations (Chapter 17).

CHANGES TO THE SIXTH EDITION

Improvements to the Sixth Edition have been made in nearly all chapters adding examples
and problems and more derivations of results. Numerous left-over typos caused by scan-
ning into LaTeX, an error-prone process at the rate of many errors per page, have been
corrected along with mistakes, such as in the Dirac y-matrices in Chapter 3. A few chap-
ters have been relocated. The Gamma function is now in Chapter 8 following Chapters 6
and 7 on complex functions in one variable, as it is an application of these methods. Dif-
ferential equations are now in Chapters 9 and 10. A new chapter on probability has been
added, as well as new subsections on differential forms and Mathieu functions in response
to persistent demands by readers and students over the years. The new subsections are
more advanced and are written in the concise style of the book, thereby raising its level to
the graduate level. Many examples have been added, for example in Chapters 1 and 2, that
are often used in physics or are standard lore of physics courses. A number of additions
have been made in Chapter 3, such as on linear dependence of vectors, dual vector spaces
and spectral decomposition of symmetric or Hermitian matrices. A subsection on the dif-
fusion equation emphasizes methods to adapt solutions of partial differential equations to
boundary conditions. New formulas have been developed for Hermite polynomials and are
included in Chapter 13 that are useful for treating molecular vibrations; they are of interest
to the chemical physicists.
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CHAPTER 1

VECTOR ANALYSIS

1.1 DEFINITIONS, ELEMENTARY APPROACH

In science and engineering we frequently encounter quantities that have magnitude and
magnitude only: mass, time, and temperature. These we label scalar quantities, which re-
main the same no matter what coordinates we use. In contrast, many interesting physical
quantities have magnitude and, in addition, an associated direction. This second group
includes displacement, velocity, acceleration, force, momentum, and angular momentum.
Quantities with magnitude and direction are labeled vector quantities. Usually, in elemen-
tary treatments, a vector is defined as a quantity having magnitude and direction. To dis-
tinguish vectors from scalars, we identify vector quantities with boldface type, that is, V.

Our vector may be conveniently represented by an arrow, with length proportional to the
magnitude. The direction of the arrow gives the direction of the vector, the positive sense
of direction being indicated by the point. In this representation, vector addition

C=A+B (1.1)

consists in placing the rear end of vector B at the point of vector A. Vector C is then
represented by an arrow drawn from the rear of A to the point of B. This procedure, the
triangle law of addition, assigns meaning to Eq. (1.1) and is illustrated in Fig. 1.1. By
completing the parallelogram, we see that

C=A+B=B+A, (1.2)

as shown in Fig. 1.2. In words, vector addition is commutative.
For the sum of three vectors

D=A+B+C,
Fig. 1.3, we may first add A and B:
A+B=E.

1
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FIGURE 1.1 Triangle law of vector
addition.

FIGURE 1.2 Parallelogram law of
vector addition.

D

FIGURE 1.3  Vector addition is

associative.
Then this sum is added to C:

D=E+C.
Similarly, we may first add B and C:

B+C=F.
Then

D=A+F.

In terms of the original expression,
(A+B)+C=A+B+0).

Vector addition is associative.
A direct physical example of the parallelogram addition law is provided by a weight
suspended by two cords. If the junction point (O in Fig. 1.4) is in equilibrium, the vector



