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PREFACE

This text is a rigorous introduction on an elementary level to the theory
of analytic functions of one complex variable. At American universities
it is intended to be used by first-year graduate and advanced under-
graduate students.

Since the time the first edition was published there has been a
marked change in the quality of American students of mathematics.
They enter college better prepared, and they are confronted with true
mathematical reasoning at an earlier stage. To a lesser degree the same
is true abroad.

In preparing the second edition the author has striven to adjust to this
greater maturity of the readers. At the same time the essentially elemen-
tary character of the exposition has not been sacrificed. Indeed, nothing
could be gained by addressing only the ablest students. Therefore, as
in the first edition, the presentation is comparatively broad in the
beginning, except for condensed reviews of familiar material, and rises
only slowly to a higher level of conciseness. The author has tried to
emphasize economy of thought in order to make the reader aware of the
intrinsic unity which is so characteristic of the subject.

We enumerate the most important changes from the first edition:

1. The exponential and trigonometric functions are now defined by
means of power series. In order to do so it was necessary to introduce
an early elementary section on complex power series, a procedure that
is not without didactic value in itself.

. 2. The introduction to point set topology has been rewritten. It
now includes the fundamental properties of metric spaces and a more
detailed discussion of compactness.

3. Normal families are approached in a more direct manner, and the
connection with compactness is emphasized.
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4. The Riemann mapping theorem has been combined with a section
on the Schwarz-Christoffel formula.

5. A short chapter on elliptic functions has been added. It is
deliberately very concentrated in an effort to spare the reader from the
customary maze of notations that are needed only by specialists.

6. The exercise sections have been enlarged, and some starred exer-
cises with generous hints for their solution have been included. The
latter are to be regarded as part of the text, and students should be
encouraged to compose complete proofs.

I should like to take this opportunity to reaffirm my indebtedness to
my late teacher Ernst Lindel6f. The whole structure of the book is
also deeply influenced by Emil Artin’s idea to base elementary homology
theory on winding numbers.

I am very grateful to a number of mathematicians who have pointed
out errors in the first edition. I can only express a pious hope that no
new ones have crept in.

Lars V. Ahlfors
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1. THE ALGEBRA OF COMPLEX NUMBERS

It is fundamental that real and complex numbers obey the same
basic laws of arithmetic. We begin our study of complex func-
tion theory by stressing and implementing this analogy.
| 0a s uf}\ A 1.1. Arithmetic Operations. From elementary algebra the
' 0 reader is acquainted with the ¢maginary unit ¢ with the property
M@' C’LA = —1. If the imaginary unit is combined with two real num-
) bers a, B by the processes of addition and multiplication, we
obtain a compler number a + i3. « and B are the real and
imaginary part of the complex number. If @ = 0, the number is
said to be purely imaginary; if 8 = 0, it is of course real. Zero is
the only number which is at once real and purely imaginary.
Two complex numbers are equal if and only if they have the same
real part and the same imaginary part.
Addition and multiplication do not lead out from the system
of complex numbers. Assuming that the ordinary rules of
arithmetic apply to complex numbers we find indeed

(1) (@a+18) + (v+18) = (@a+v) +2B8 + 9)
and
(2 (a +18)(yv + 98) = (av - B8) =+ i(ad + Bv).

In the second identity we have made use of the relation ¢? = —1.
It is less obvious that division is also possible. We wish to

1



2 COMPLEX ANALYSIS

show that (a 4 ¢8)/(y + 18) is a complex number, provided that v +
6 5 0. If the quotient is denoted by z + ¢y, we must have

a+i8 = (v + i) (z + 1y).
By (2) this condition can be written
o+ 18 = (yz — dy) + (6 + vy),
and we obtain the two equations

a=vr — 8y
B = dz + vy.

This system of simultaneous linear equations has the unique solution
= 21T P
,72 + 52
_ By — ad
V=5
for we know that v2 + 62 is not zero. We have thus the result

a+if _ ay + B By — ad
® PR Ry - B
Once the existence of the quotient has been proved, its value can be
found in a simpler way. If numerator and denominator are multiplied
with ¥y — 45, we find at once

e+ B _ (a+iB)(y — i) _ (ay + B5) + i(By — a?d)
v+i8 (v + 20)(y — i9) v? + 8

As a special case the reciprocal of a complex number 5 0 is given by

1 _a—iﬂ
a+ 18 a4+ B2

We note that ¢» has only four possible values: 1, ¢, —1, —2. They
correspond to values of n which divided by 4 leave the remainders 0, 1,
2, 3.

EXERCISES
1. Find the values of

y \ 2
a+w, g (FF3) a+orta-on
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2. If z = z + iy (z and y real), find the real and imaginary parts of

5 1 z—1 1
z - —
! z’ 241’ e
3. Show that
] <\ 3 . 6
(_1 Zt27f '\/3) =1 and (Ztl iz'lr '\/3> =1

for all combinations of signs.

%1.2. Square Roots. We shall now show that the square root of a R;A"\ vart
complex number can be found explicitly. If the given number is & + 23, C‘*‘M

we are looking for a number x + 4y such that
(x + ) = a + 6.
This is equivalent to the system of equations

2 _ 2 =
@) : 29?1/ = ;.
From these equations we obtain

@ + ¢ = @ — ¥ + da% = o + B2
Hence we must have
2?4y =V + B

where the square root is positive or zero. Together with the first equa-
tion (4) we find

Ha + Va + BY)
1(—a + Va + B).

2
2
Y

®).

Observe that these quantities are positive or zero regardless of the sign
of a.

The equations (5) yield, in general, two opposite values for z and two
for y. But these values cannot be combined arbitrarily, for the second
equation (4) is not a consequence of (5). We must therefore be careful
to select z and y so that their product has the sign of 8. This leads to the
general solution

© vaTH- (VLR 4 8 et VT

provided that 8 5 0. Forf = 0 the valuesare + Vaifa 2 0, £i vV —«
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if @ < 0. It is understood that all square roots of positive numbers are
taken with the positive sign.

We have found that the square root of any complex number exists
and has two opposite values. They coincide only if @ 4+ 8 = 0. They
are real if 8 = 0, @ = 0 and purely imaginary if 8 = 0, @ £ 0. In other
words, except for zero, only positive numbers have real square roots and
only negative numbers have purely imaginary square roots.

Since both square roots are in general complex, it is not possible to
distinguish between the positive and negative square root of a complex
number. We could of course distinguish between the upper and lower
sign in (6), but this distinction is artificial and should be avoided. The
correct way is to treat both square roots in a symmetric manner.

EXERCISES
1. Compute
WO = R T = Y/
2. Find the four values of v/ —1.

3. Compute v/% and v/ —1.
4. Solve the quadratic equation

22+ (a+1B)z+ v+ =0.

1.3. Justification. So far our approach to complex numbers has been
completely uncritical. We have not questioned the existence of a number
system in which the equation 22 + 1 = 0 has a solution while all the rules
of arithmetic remain in force.
€ begin by recalling the characteristic properties of the real-number
ystem which we denote by R. In the first place, R is a field. This
means that addition and multiplication are defined, satisfying the associ-
ative, commutative, and disiributive laws. The numbers 0 and 1 are neu-
tral elements under addition and multiplication, respectively: a + 0 = «,
a1 = a for all a. Moreover, the equation of subtraction 8 + z = «
has always a solution, and the equation of division Sz = a has a solution
whenever 8 = 0.t

One shows by elementary reasoning that the neutral elements and the
results of subtraction and division are unique. Also, every field is an
tntegral domain: of = 0 if and only if « = Q or 8 = 0.

T We assume that the reader has a working knowledge of elementary algebra.
Although the above characterization of a field is complete, it obviously does not
convey much to a student who is not already at least vaguely familiar with the concept.



