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Lyapunov Exponents
A Tool to Explore Complex Dynamics

Lyapunov exponents lie at the heart of chaos theory and are widely used in studies of
complex dynamics. Utilising a pragmatic, physical approach, this self-contained book
provides a comprehensive description of the concept. Beginning with the basic properties
and numerical methods, it then guides readers through to the most recent advances in
applications to complex systems. Practical algorithms are thoroughly reviewed and their
performance is discussed, while a broad set of examples illustrates the wide range of
potential applications. The description of various numerical and analytical techniques
for the computation of Lyapunov exponents offers an extensive array of tools for the
characterisation of phenomena, such as synchronisation, weak and global chaos in low-
and high-dimensional setups, and localisation. This text equips readers with all of the
investigative expertise needed to fully explore the dynamical properties of complex
systems, making it ideal for both graduate students and experienced researchers.

Arkady Pikovsky is Professor of Theoretical Physics at the University of Potsdam. He is a
member of the editorial board for Physica D and a Chaotic and Complex Systems Editor
for J. Physics A: Mathematical and Theoretical. He is a Fellow of the American Physical
Society and co-author of Synchronization: A Universal Concept in Nonlinear Sciences. His
current research focusses on nonlinear physics of complex systems.
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Preface

With the advent of electronic computers, numerical simulations of dynamical models have
become an increasingly appreciated way to study complex and nonlinear systems. This has
been accompanied by an evolution of theoretical tools and concepts: some of them, more
suitable for a pure mathematical analysis, happened to be less practical for applications;
other techniques proved instead very powerful in numerical studies, and their popularity
exploded. Lyapunov exponents is a perfect example of a tool that has flourished in the
modern computer era, despite having been introduced at the end of the nineteenth century.

The rigorous proof of the existence of well-defined Lyapunov exponents requires subtle
assumptions that are often impossible to verify in realistic contexts (analogously to other
properties, e.g., ergodicity). On the other hand, the numerical evaluation of the Lyapunov
exponents happens to be a relatively simple task; therefore they are widely used in many
setups. Moreover, on the basis of the Lyapunov exponent analysis, one can develop novel
approaches to explore concepts such as hyperbolicity that previously appeared to be of
purely mathematical nature.

In this book we attempt to give a panoramic view of the world of Lyapunov exponents,
from their very definition and numerical methods to the details of applications to various
complex systems and phenomena. We adopt a pragmatic, physical point of view, avoiding
the fine mathematical details. Readers interested in more formal mathematical aspects are
encouraged to consult publications such as the recent books by Barreira and Pesin (2007)
and Viana (2014).

An important goal for us was to assess the reliability of numerical estimates and to enable
a proper interpretation of the results. In particular, it is not advisable to underestimate the
numerical difficulties and thereby use the various subroutines as black boxes; it is important
to be aware of the existing limits, especially in the application to complex systems.

Although there are very few cases where the Lyapunov exponents can be exactly
determined, methods to derive analytic approximate expressions are always welcome, as
they help to predict the degree of stability, without the need of actually performing possibly
long simulations. That is why, throughout the book, we discuss analytic approaches
as well as heuristic methods based more on direct numerical evidence, rather than on
rigorous theoretical arguments. We hope that these methods will be used not only for a
better understanding of specific dynamical problems, but also as a starting point for the
development of more rigorous arguments.

The various techniques and results described in the book started accumulating in the
scientific literature during the 1980s. Here we have made an effort to present the main
(according to our taste) achievements in a coherent and systematic way, so as to make
the understanding by potentially unskilled readers easier. An example is the perturbative
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approach of the weak-disorder limit that has already been discussed in other reviews; here
we present the case of ellyptic, hyperbolic and marginal matrices in a systematic manner.

Although this is a book and, as such, mostly devoted to a coherent presentation of known
results, we have also included novel elements, wherever we felt that some gaps had to be
filled. This is for instance, the case of the finite-size effects in the Kuramoto model or the
extension of the techniques developed by Sompolinsky et al. to a wider class of random
processes.

As aresult, we are confident that the book-can be read at various levels, depending on the
needs of the reader. Those interested in the bare application to some simple cases will find
the key elements in the first three chapters; the following chapters contain various degrees
of in-depth analysis. Cross references among the common points addressed in the various
sections should help the reader to navigate across specific items.

The most important acknowledgement goes to the von Humboldt Foundation, which,
supporting the visit of Antonio Politi to Potsdam with a generous fellowship, has allowed
us to start and eventually complete this project. Otherwise, writing the book would have
been simply impossible.

We happened to discuss with, ask and receive suggestions from various colleagues. We
specifically wish to acknowledge V. N. Biktashev, M. Cencini, H. Chaté, A. Crisanti, F.
Ginelli, H. Kantz, R. Livi, Ya. Pesin, G. Puccioni, K. A. Takeuchi, R. Tonjes and H.-L.
Yang.

Antonio Politi wishes also to acknowledge A. Torcini and S. Lepri as long-term collab-
orators who contributed to the development of some of the results herein summarised.

Special thanks go to P. Grassberger, who, more than 10 years after the publication of
a joint paper with G. D’Alessandro, S. Isola and Antonio Politi on the Hénon map, was
able to dig out some data to determine the still most accurate estimate of the topological
entropy of such a map. As laziness has prevented a dissemination of those results, we made
an effort to include them in this book.

We also wish to thank E. Lyapunova, the grand-niece of A. M. Lyapunov, who provided
a high-quality photograph of the scientist who originated all of the story.

We finally warmly thank S. Capelin of Cambridge University Press, who has been
patient enough to wait for us to complete the work. We hope that the delay has been worthy
of a much better product. Although surely far from perfect, at some point we had to stop.
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Introduction

1.1 Historical considerations

1.1.1 Early results

The problem of determining the stability of a given regime (e.g. the motion of the solar
system) is as old as the concept of the dynamical system itself. As soon as scientists realised
that physical processes could be described in terms of mathematical equations, they
also understood the importance of assessing the stability of various dynamical regimes.
It is thus no surprise that many eminent scientists, such as Euler, Lagrange, Poincaré
and Lyapunov (to name a few), engaged themselves in properly defining the concept of
stability. Lyapunov exponents are one of the major tools used to assess the (in)stability
of a given regime. Within hard sciences, where there is a long-standing tradition of
quantitative studies, Lyapunov exponents are naturally used in a large number of fields,
such as astronomy, fluid dynamics, control theory, laser physics and chemical reactions.
More recently, they started to be used also in disciplines, such as biology and sociology,
where nowadays processes can be accurately monitored (e.g. the propagation of electric
signals in neural cells and population dynamics).

The reader interested in a fairly accurate historical account of how stability has been
progressively defined and quantified can refer to Leine (2010). Here, we limit ourselves to
the recapitulation of a few basic facts, starting from the Galilean times, when E. Torricelli
(1644) investigated the stability of a mechanical system and conjectured (in the modern
language) that a point of minimal potential energy is a point of equilibrium.

Besides mechanical systems, floating bodies provide another environment where sta-
bility is naturally important, especially to avoid roll instability of vessels. Unsurprisingly,
the first results came from a Flemish (S. Stevin) and a Dutch (Ch. Huygens) scientist: at
that time, the cutting-edge technology of ship-building had been developed in the Dutch
Republic. In particular, Huygens’ approach was quite modern in that he addressed the
problem by explicitly comparing two different states. D. Bernoulli too dealt with the
problem of roll-stability, emphasising the importance of the restoring forces, which make
the body return towards the equilibrium state. L. Euler was the first to distinguish between
stable, unstable, and indifferent equilibria and suggested also the possibility of considering
infinitely small perturbations.

The concept of stability was further developed by J.-L. Lagrange, who formalised the
ideas expressed by Torricelli (for conservative dynamical systems), clarifying that, in the
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presence of a vanishing kinetic energy, the minimum of the potential energy corresponds
to a stable equilibrium. The corresponding theorem is nowadays referred to as “Lagrange-
Dirichlet” because of further improvements introduced by J. P. G. L. Dirichlet.

In the nineteenth century, fluid dynamics provided many examples where the stability
assessment was far from trivial. Some scientists (notably Lord Kelvin) were striving to
unify physics under the paradigm of the motion of perfect liquids, and such an approach
required the stability of various forms of motion. At a macroscopic level, in the attempt
of predicting the Earth’s shape, the problem of determining the stable shape of a rotating
fluid, under the influence of the sole action of centrifugal and (internal) gravitational forces,
was posed. The studies led to the conclusion that, in some conditions, ellipsoidal shapes
are to be expected, but the problem was not fully solved (see Section 1.1.2 on Lyapunov’s
biography).

On a more microscopic level, hydrodynamics proved to be an extremely fertile field
for the appearance of instabilities: concepts such as sensibility to infinitesimal and finite
perturbations were present in the minds of esteemed scientists. G. Stokes was one of the
pioneers: he stipulated that instabilities naturally occur in the presence of rapidly diverging
flow lines, such as past a solid obstacle. Slightly later, H. Helmholtz and W. Thomson
discovered that the surface separating two adjacent flows may lose its flatness. Contrary
to the instability foreseen by Stokes, which was based only on conjectures, the latter
one, nowadays referred to as the Kelvin-Helmholtz instability, was also derived directly
from the hydrodynamics equations. Last but not least, Lord Kelvin strived to develop a
vortex theory of matter, which, however, required the stability of the underlying dynamical
regimes. Only at the end of his career did he convince himself that his ideas were severely
undermined by the unavoidable presence of instabilities. The interested reader can look at
the exhaustive review by Darrigol (2002).

Celestial mechanics proved to be another fruitful environment for the development
of new ideas. In order to appreciate how relevant the subject was in those times, it is
sufficient to mention that when P. S. Laplace studied perturbatively the behaviour of three
gravitationally interacting particles (the so-called 3-body problem), he referred to it as to
the “world system”. Heavily relying on recent results by Lagrange, Laplace concluded
that the semi-major axis of the orbits is characterised by periodic oscillations. Thus, he
concluded in favour of stability, meaning that the fluctuations are bounded. A bit later,
S. D. Poisson discovered that second- and third-order terms generate a secular contribution
of the type Atsinat; however, as remarked by C. G. J. Jacobi, it was not clear whether
such a contribution would survive a higher-order analysis. All in all, no clear answer had
yet been given by the end of the nineteenth century. This is the reason why King Oscar II of
Sweden decided to offer a prize for those who could find an explicit solution. H. Poincaré
won the prize even though he did not actually solve the problem. On the contrary, his work
established the existence of unavoidable high sensitivity to initial conditions: what was
later called the ‘butterfly effect’ by the metereologist E. N. Lorenz.! Poincaré received the

I The expression ‘butterfly effect’ was arguably introduced by Lorenz in 1972, when he gave a talk at the
American Association for the Advancement of Science entitled “Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?”
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prize for the revolutionary methods that he developed to gain insight about the behaviour
of generic dynamical systems.

A last environment where stability turned out to be of primary importance is related
to engineering applications. In the nineteenth century, with the advent of steam engines,
it became necessary to regulate the internal pressure inside the boiler. This problem
represented the starting point for the birth of a new discipline: automatic control theory.
J. C. Maxwell analysed the stability of Watt’s flyball regulator by linearising the equations
of motion. Independently, I. A. Vyshnegradtsky used a similar approach to study the same
problem in greater detail.

1.1.2 Biography of Aleksandr Lyapunov

Here, we briefly summarise some basic facts of the biography of Aleksandr Mikhailovich
Lyapunov, mostly relying on Smirnov (1992) and Shcherbakov (1992).

Aleksandr Lyapunov was born in 1857 in Yaroslavl. After completing his gymnasium
studies in Nizhny Novgorod, Lyapunov moved to the University of St. Petersburg, where
the Mathematical Department was blooming under the direction of Pafnuty Chebyshev,
who soon became the supervisor of his graduate studies. Chebyshev used to say that “every
young scholar ... should test his strength on some serious theoretical questions presenting
known difficulties”. As a matter of fact, Lyapunov got involved in a problem that had been
earlier proposed to other students (he discovered this later in his career), namely that of
determining the shape of a rotating fluid. As his efforts proved unsuccessful, Lyapunov

@ TRE A M. Lyapunov in 1902, in Kharkov. Photo courtesy of Elena Alexeevna Lyapunova.
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decided to refocus his work, preparing a dissertation entitled On the stability of elliptic
forms of equilibrium of rotating fluids, which nevertheless allowed him to be awarded a
Master’s degree in applied mathematics (1884) and made him known in Europe. In 1885,
Lyapunov was appointed Privatdozent in Kharkov, where he worked on the stability of
mechanical systems. His main results were summarised in a remarkable thesis entitled The
general problem of the stability of motion, which granted him a PhD at Moscow University
(1892). The dissertation contains an extraordinarily deep and general analysis of systems
with a finite number of degrees of freedom. Interestingly, Lyapunov mentioned H. Poincaré
as one of his principal sources of inspiration.

In 1893, Lyapunov was promoted to ordinary professor in Kharkov. In the following
years, he kept studying stability properties of dynamical systems, investigated the Dirchlet
problem, and engaged himself in problems of probability theory, contributing to the central
limit theorem and paving the way to the rigorous results obtained by his friend Andrei
Markov. In 1901 he became head of the department of Applied Mathematics at the Russian
Academy of Sciences in St. Petersburg (the position, without teaching duties, had been
vacant since 1894, when Chebyshev died).

After having completed a cycle of papers on the stability of motion, Lyapunov came back
to the question posed to him by Chebyshev about 20 years before and much related to the
problem of determining the form of celestial bodies, earlier formulated by Laplace. While
he was still struggling to find a solution, Lyapunov became aware of a book published by
Poincaré in 1902 on the same problem and managed to acquire a copy. From a letter sent
by Lyapunov to his disciple and close friend Steklov: “To my greatest surprise, I did not
find anything significant in this book . .. Thus my work has not suffered and I apply myself
to it afresh”. The book by Poincaré essentially contained previous (known) concepts with
little advancements.

Shortly after, the astronomer George Darwin (son of Charles Darwin) published some
papers on the same subject, concluding that pear-shaped forms are to be expected.
Lyapunov completed his studies in 1905: a treatise of about 1000 pages, with some
mathematical calculations made up to 14 digits when necessary. He indeed discovered
deviations from ellipsoids, but he also showed that pear-shaped forms are unstable. The
controversy with Darwin went on for some years, until it was eventually settled in 1917,
when another British astronomer, J. H. Jeans, confirmed that Lyapunov was right.

In 1917 Lyapunov left St. Petersburg for Odessa, so that his wife could receive
treatment for tuberculosis. On the day of his wife’s death, Aleksandr Lyapunov committed
suicide.

1.1.3 Lyapunov’s contribution

The first formal definition of stability was given by Lyapunov in his PhD thesis: a given
trajectory is stable if, for an arbitrary ¢, there always exists a & such that all other trajectories
starting in a §-neighbourhood of the given one remain at most at a distance ¢ to it.
He introduced also what was later called asymptotic stability, to refer to cases where
sufficiently small perturbations eventually die.



