FRES

- (ZR3hR)

s = e

Kenneth C. Louden

(%) Kenneth C. Louden #
Mow Il HORR 4 @b + E H MR

o | China Machine Press Y ciTic PUBLISHING HOUSE

Kenneth C. Louden: Compiler Construction Principles and Practice

Original copyright © 1997 by PWS Publishing Company. All rights reserved.

First published by PWS Publihing Company, a division of Thomson Learning, United
States of America.

Reprinted for People’s Republic of China by Thomson Asia Pte Ltd and China Machine
Press and CITIC Publishing House under the authorization of Thomson Learning. No part of
this book may be reproduced in any form without the the prior written permission of Thomson

Learning and China Machine Press.

A B AR e 3 A AR > HARAR A BEBUPUAR Tl HH RRAL A AP 5 AR L AR, R
ZHREFT, MEUUEMT AEHRDREBHE,
JEARER A, BALBIT

AHLENBIZE: EF: 01-2001-5320

EHERSE (CIP) #ig

GEFE S LR (%) %% SEBENEY:E S HUR T AR, 2002.8
(ZHFIRHE)

454 3C: Compiler Construction Principles and Practice

ISBN 7-111-10842-6

I.% - 0% 1. H5F8F-BFRT-%EX V. .TP314
v [A I 5 P CIPRIE I (2002) 450631848

PUR Tk B ARAL (ERmEmE A EA# 225 HRBIRFS100037)
HiE%mE: =5

b BE R EN R TEDR - FAEBIEILR RITHRTT
20024E8 A 55 LRSS LK ERRY

787mm x 1092mm1/16 « 37ER 3K

EN¥k: 0001-3 0007

Efr: 58.007C

FUAS, mAET, BT, BRI, mAHRITERRER

wi

Preface

This book is an introduction to the field of compiler construction. It combines a detailed
study of the theory underlying the modern approach to compiler design, together with
many practical examples, and a complete description, with source code, of a compiler
for a small language. It is specifically designed for use in an introductory course on
compiler design or compiler construction at the advanced undergraduate level.
However, it will also be of use to professionals joining or beginning a compiler writing
project, as it aims to give the reader all the necessary tools and practical experience to
design and program an actual compiler.

A great many texts already exist for this field. Why another one? Because virtually
all current texts confine themselves to the study of only one of the two important
aspects of compiler construction. The first variety of text confines itself to a study of
the theory and principles of compiler design, with only brief examples of the applica-
tion of the theory. The second variety of text concentrates on the practical goal of pro-
ducing an actual compiler, either for a real programming language or a pared-down ver-
sion of one, with only small forays into the theory underlying the code to explain its
origin and behavior. I have found both approaches lacking. To really understand
the practical aspects of compiler design, one needs to have a good understanding of the
theory, and to really appreciate the theory, one needs to see it in action in a real or
near-real practical setting.

This text undertakes to provide the proper balance between theory and practice, and
to provide enough actual implementation detail to give a real flavor for the techniques
without overwhelming the reader. In this text, I provide a complete compiler for a small
language written in C and developed using the different techniques studied in each
chapter. In addition, detailed descriptions of coding techniques for additional language
examples are given as the associated topics are studied. Finally, each chapter concludes
with an extensive set of exercises, which are divided into two sections. The first con-
tains those of the more pencil-and-paper variety involving little programming. The sec-
ond contains those involving a significant amount of programming.

In writing such a text one must also take into account the different places that a
compiler course occupies in different computer science curricula. In some programs, a
course on automata theory is a prerequisite; in others, a course on programming lan-
guages is a prerequisite; while in yet others no prerequisites (other than data structures)
are assumed. This text makes no assumptions about prerequisites beyond the usual data

PREFACE - Vi

structures course and a familiarity with the C language, yet is arranged so that a pre-
requisite such as an automata theory course can be taken into account. Thus, it should
be usable in a wide variety of programs. '

A final problem in writing a compiler text is that instructors use many different .
classroom approaches to the practical application of theory. Some prefer to study the
techniques using only a series of separate small examples, each targeting a specific con-
cept. Some give an extensive compiler project, but make it more manageable with the
use of Lex and Yacc as tools. Others ask their students to write all the code by hand
(using, say, recursive descent for parsing) but may lighten the task by giving students
the basic data structures and some sample code. This book should lend itself to all of
these scenarios.

Overview and Organization

In most cases each chapter is largely independent of the others, without artificially
restricting the material in each. Cross-references in the text allow the reader or instruc-
tor to fill in any gaps that might arise even if a particular chapter or section is skipped.

Chapter 1 is a survey of the basic structure of a compiler and the techniques stud-
ied in later chapters. It also includes a section on porting and bootstrapping.

Chapter 2 studies the theory of finite automata and regular expressions, and then
applies this theory to the construction of a scanner both by hand coding and using
the scanner generation tool Lex.

Chapter 3 studies the theory of context-free grammars as it pertains to parsing, with
particular emphasis on resolving ambiguity. It gives a detailed description of three
‘common notations for such grammars, BNF, EBNF, and syntax diagrams. It also
discusses the Chomsky hierarchy and the limits of the power of context-free gram-
mars, and mentions some of the important computation-theoretic results concerning
such grammars. A grammar for the sample language of the text is also provided.

Chapter 4 studies top-down parsing algorithms, in particular the methods of recur-
sive-descent and LL(1) parsing. A recursive-descent parser for the sample language
is also presented.

Chapter 5 continues the study of parsing algorithms, studying bottom-up parsing in
detail, culminating in LALR(1) parsing tables and the use of the Yacc parser gen-
erator tool. A Yacc specification for the sample language is provided.

Chapter 6 is a comprehensive account of static semantic analysis, focusing on
attribute grammars and syntax tree traversals. It gives extensive coverage to the
construction of symbol tables and static type checking, the two primary examples
of semantic analysis. A hash table implementation for a symbol table is also given
and is used to implement a semantic analyzer for the sample language.

Chapter 7 discusses the common forms of runtime environments, from the fully
static environment of Fortran through the many varieties of stack-based environ-
ments to the fully dynamic environments of Lisp-like languages. It also provides an
implementation for a heap of dynamically allocated storage.

Chapter 8 discusses code generation both for intermediate code such as three-
address code and P-code and for executable object code for a simple von Neumann

viii

PREFACE

architecture, for which a simulator is given. A complete code generator for the sam-
ple language is given. The chapter concludes with an introduction to code opti-
mization techniques.

Three appendices augment the text. The first contains a detailed description of a
language suitable for a class project, together with a list of partial projects that can
be used as assignments. The remaining appendices give line-numbered listings of
the source code for the sample compiler and the machine simulator, respectively.

Use as a Text

This text can be used in a one-semester or two-semester introductory compiler course,
either with or without the use of Lex and Yacc compiler construction tools. If an
automata theory course is a prerequisite, then Sections 2.2., 2.3, and 2.4 in Chapter 2
and Sections 3.2 and 3.6 in Chapter 3 can be skipped or quickly reviewed. In a one-
semester course this still makes for an extremely fast-paced course, if scanning, pars-
ing, semantic analysis, and code generation are all to be covered. '

One reasonable alternative is, after an overview of scanning, to simply provide a
scanner and move quickly to parsing. (Even with standard techniques and the use of C,
input routines can be subtly different for different operating systems and platforms.)
Another alternative is to use Lex and Yacc to automate the construction of a scanner
and a parser (I do find, however, that in doing this there is a risk that, in a first course,
students may fail to understand the actual algorithms being used). If an instructor
wishes to use only Lex and Yacc, then further material may be skipped: all sections of
Chapter 4 except 4.4, and Section 2.5 of Chapter 2.

If an instructor wishes to concentrate on hand coding, then the sections on Lex and
Yacc may be skipped (2.6, 5.5, 5.6, and 5.7). Indeed, it would be possible to skip all of
Chapter 5 if bottom-up parsing is ignored.

Similar shortcuts may be taken with the later chapters, if necessary, in either a tools-
based course or a hand-coding style course. For instance, not all the different styles of
attribute analysis need to be studied (Section 6.2). Also, it is not essential to study in
detail all the different runtime environments cataloged in Chapter 7. If the students are
to take a further course that will cover code generation in detail, then Chapter 8 may be
skipped.

In a two-quarter or two-semester course it should be possible to cover the en-
tire book.

Internet Availability of Resources

All the code in Appendices B and C is available on the Web at locations pointed to from
my home page (http://www.mathcs.sjsu.edu/faculty/louden/). Additional resources,
such as errata lists and solutions to some of the exercises, may also be available from
me. Please check my home page or contact me by e-mail at louden@cs.sjsu.edu.

Acknowledgments

‘My interest in compilers began in 1984 with a summer course taught by Alan Demers.

His insight and approach to the field have significantly influenced my own views.

PREFACE : lix

Indeed, the basic organization of the sample compiler in this text was suggested by that
course, and the machine simulator of Appendix C is a descendant of the one he
provided.

More directly; I would like to thank my colleagues Bill Giles and Sam Khuri at San
Jose State for encouraging me in this project, reading and commenting on most of the
text, and for using preliminary drafts in their classes. I would also like to thank the stu-
dents at San Jose State University in both my own and other classes who provided use-
ful input. Further, I would like to thank Mary T. Stone of PWS for gathering a great
deal of information on compiler tools and for coordinating the very useful review
process.

The following reviewers contributed many excellent suggestions, for which I am
grateful:

Jeff Jenness Jerry Potter
Arkansas State University Kent State University
Joe Lambert Samuel A. Rebelsky
Penn State University Dartmouth College
Joan Lukas

University of Masschusetts, Boston

Of course I alone am responsible for any shortcomings of the text. I have tried to make
this book as error-free as possible. Undoubtedly errors remain, and I would be happy to
hear from any readers willing to point them out to me.

Finally, I would like to thank my wife Margreth for her understanding, patience,
and support, and our son Andrew for encouraging me to finish this book.

K.CL

& s 42 s A At

(RAFEER)
(Linuxi2 2% AL T)
(BARRITETHBARER) (RBEF2R)
(i RE)

((C++#¥./?’iy’iﬁi§’%’ D (48R)

(it Em i em) (RBH2R)
(AT%H)

GELES S

(HE2i%3])

(BEEZEBAE) (RBFIR)
(e, BB A—CriETHiE) (FR)
(BHREFAAER) (RBFR)
GBS ey Hokkah) (F25)
(T RHATHI HR, h5542)
(Bt EREGHARFTH) (REFESHI)
(HPBEIEEML) (F2R)
(BEERE, HELME) (REF2R)
(ARBERL) (F208)
(CHEAZTET) (F2R)

(mox%)

(s Mot HALLEA)

M FA L

Brian W. Kernighan, Rob Pike #/% 7 #& #$/207%,
Gary J. Nutt Z/f @ ¥ $F5/290

Ravi Sethi #/£ 7 % ¥Fi&/4571

Alfred Aho /5 &+ Fi§

Bjarne Stroustrup #/£ F & #/857L

David E. Culler, Jaswinder Pal Singh #/42 /8 %%
Nils J. Nilsson F/#8 34k $i%/397L

Hagan /8% $i&

Sipser F/7K 2 % %3§/30%

Silberschatz /4 4% %i%

Sartaj Sahni F/#3K ¥#/490

Kenneth H. Rosen /% % X %i&/75%

David F. Rogers /6 # 3% $%/557%

Kai Hwang, Zhiwei Xu &/f &2 ¥3§/4970
Roger S. Pressman /4 % #§

Behrouz Forouzan #/% i} & ¥i%/6871

Patrick O’ Neil, Elizabeth O Neil #/8# & $%/55L
Andrew S. Tanenbaum ¥/ f1 8 $i%
Kernighan, Ritchie #/# & L %#§/28 7T

Richard A. Brualdi #//% 5% & %i%/387C

Andrew S. Tanenbaum F/3] L& Fi%/467T

GRH X TEA GG S8)

(UNIXZRE & A 472)
(TCP/IP#/# %1: i)
(TCPIP#ME %2: %H&)

{TCP/IPi#f#% %3:. TCPE 41X, HTTP.
NNTPAUNIX L)
(KEEZG%TH)

Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides /8 & Fi#/35%¢

W. Richard Stevens /X &t Fi&/557C

W. Richard Stevens F/#t #1= ¥ %/457 A
Gary R. Wright, W. Richard Stevens ¥/#t# 1= ¥i%
/787C

W. Richard Stevens &/#t#4= ¥i§/357

C.J. Date /X5 ¥%/6671

GHEAMBHFRER LR —CETHR)
(BHEF2R)

(CETHMMTHA) (REFR)
{C++iE ZT 9L FEL)
(AARE—RH R EX A GG RMNIET)
(H5HF K A%kt)
(BT 5 M 25442)

(¥ RAGREL %)
(HIFRERER)

(RATRBHAAAE)

(HF3ZH. pRALRIT)

GHEMAL)

(IEEA%RE)

CGHEMAE B4)

(HBBEEZ ZGAR)

(HBLRE)

(MBS 38)

(€ E 722)

(Bfk TRe— RBRAGH LT %) (REFUR)
(44t TA2—Javaid 3 5 9L)
(EEAABA) (FUR)

(HIRBIELE M%)
CGHEMML) (F20R, FXAR)
(FHrsedEme) (R HUR)
(SAKFE AR RE)
(HBERE: BAESHAK)

(shamely AL)

(HHER)

(@& ot § A2 F R —B BB %)
(ARBBAEER) (BRBEFOIR)
(KB ZGAKRE)
(MEAEL5ESLE)
(BEELAGHE)

{ UNIX#24F & %442)

(GHEM ML 5 B4R) (H2%)
(HEEZGEA)

James D. Foley, Andries Van Dam, Steven K. Feiner,
John F. Hughes ¥/ % % $#%

Ira Pohl /&4 F5/487

Bjarne Stroustrup &/£ F & $/487T

Jef Raskin /% T4 #

Jie Wu F/& £ F#/30L

William A. Shay #/#&4% & ¥i8/40C

Giarratano, Riley #/¢7 % Fi§/497

Kenneth C. Louden #//5# % ¥%/39L

Palmer #//®4% %§/20L

John M. Yarbrough /% # % F#&/49¢

June Jamrich Parsons, Dan Oja #/%& # % ¥ #/507L
Ralph M. Stair, George W. Reynolds /3K 3% ¥ 3%/427%,
Mandell /X8 F $#/387

Philip J. Pratt, Joseph J. Adamski £/# & ¥#/207C
W. H. Inmon ¥/ X &#% Fi§/254

Lars Tvede F/# R IX F3§/2871

Ryan K. Stephens Ronald R. Plew F/47 £7& X ik F
#F/3570

Roger S. Pressman /4% 4 %/487

Stephen R. Schach /% k.l %i%/387C

Abraham Silberschatz, Henry F. Korth, S. Sudarshan
I A&F Fi%1497%

Behrouz Forouzan /% 8 % ¥i%/487%

Larry L. Peterson, Bruce S.Davie &/*+#74% ¥ i%/497C
Jean Walrand, Pravin Varaiya /% £# $i&/557¢
Wayne Wolf /70 % 3% %i%/657

Jiawei Han, Micheline Kamber ¥/7€ 80 &)4 %3§
139

Charles Petzold /R ¥ ¥i58/247T

Karl E. Wiegers &//: 7 # % 35/197C

Micheal J. Laszlo F/1T £ % %§/354

Jeffrey A. Hoffer %/36148 % # 2R %&

Jeffrey D. Ullman #/F# 3% ¥i&

Philip M. Lewis E/3614 & H L& Fi¥

Hector Garcia-Molina /% % ¥#&

Sarwar F/i% R &

Douglas E. Comer Z/# B % #/40C

Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer
Widom #/# %4 ¥&/457

(ISDN. B-ISDNE #i ¥ & A=ATM) (R+ F 414)
(UNIX#4F % 4031)

(Java AR HAE) (BRHF3IR) (LMH)
{Java B2 ARH) (RBF3R) (TAH)
(C++H8E; Bt TA2H k)

{Javatp #2848) (28R)

(C++HEBR) (F2R)

William Stallings F/42 8t 3% $i5/487C
Maurice J. Bach #//4 53 ¥#/354
Harvey Deitel /% L F#/557%
Harvey Deitel /& kL F5/697T
Victor Shtern &/%)7 |t %§/854
Bruce Eckel #/4&4 /99T

Bruce Eckel /%) & ® %i/59C

{HFArR kst) Barry Wilkinson £/ &i& ¥3§/4371

(AHEMBRE) Simon Haykin &/ & 5%

(HHXBrEG%: REEER) Doreen L. Galli E/#% R $%

(ARBAERY) Andrew S. Tanenbaum &/ @& ¥i%/407T

(Javae #2848) Bruce Eckel /48 & %i%/60T

{Unix4#2 373) Brian W. Kernighan, Rob Pike /M &) 8 4i$/247C

{Internet¥ K 8) Douglas E. Comer ¥/& . $i%/187C

(C++HETA) Bruce Eckel #/x) & @ F3§/397C

(eTH%) Gary P. Schneider, James T. Perry F/8# $ /2870

GHEAUR 5 5 A A2 R % F 4) Tamara Dean 3/ #.4¢ ¥i#/157%

i AU % 52 A A2 Todd Meadors /M) 24 % i%/657

(CEAZITHE) Deitel ¥/ 481 ¥i%/337L

(C++B Ak #A2) Deitel /58t Fi§/2270
o5 E

(At HErvn M) (EXHR) David E. Culler, Jaswinder Pal Singh #/887C

(ATARE) (ER) Nils J. Nilsson /457

(B BAE RS) (EIR) Jean Walrand, Pravin Varaiya £/647C

GrEMMLE) (EAR) Larry L. Peterson, Bruce S. Davie #/657C

GrEMRZREHR: ERMEFTE) BUR (RIR)
GHEARR ik, AR) B2R (EIUR)
GHEMBHFO T RAm) (EK - FVR)
CGHEE) (EXR - F5HR)

(THREMATHIE BER, 4552 (ER)
(HIBEABBA) (RR) '

(FoEtEpuk A4) (E30UR)

(B, Fkb B A—Crris TR (ER)
(B TAR— R BA L H &) (ER)

(B TA2—TJavaid T £) (RAR)

David A. Patterson, John L. Hennessy /887
John L. Hennessy, David A. Patterson /80T
David F. Rogers /457

Carl Hamacher %#/487¢

Kai Hwang, Zhiwei Xu &/695T

Abraham Silberschatz, Henry F. Korth, S. Sudarshan
1657

Kai Hwang %/597C

Sartaj Sahni £/667

Roger S. Pressman %/687C

Stephen R. Schach /517

(EIERsEA) (EXK)

(HBBEERML) (EIR)

(BHERHEFALER) (EIR)

CGHEpk Rt FUMEH &) (ELR - $30)
(ARBAERGL) (ER - F2IR)

(aabsd) (XK - F30K)

{ISDN. B-ISDN i F 4 f=ATM) (IR - F4AR)
(MEEZAT®R) (ER - FTHR)
(C++HAE2BHA) (ER - F21R)
(RAEIER) (FER)
CTIIVETHIC I &Y

{Internet¥ KK 2k) (LR - 34)

(Mt AL,) (R - F4R)
(UNIXZREZH A %A) (IR)

(P EE, ARG S EIF L HE L)
(RXR - B2R)

(TCPNP# M %1: thi) (XK)

{Javath #2848) (R + H208)

GEHEX: TELAR QT R4) (IR)

{TCPIP# M %2. FI) (RXIR)
{ TCP/IP###% %3: TCP¥ 4L, HTTP.
NNTPAUNIXH Pl) (35K)

(ARFE—RH R EX RAAHRMIET) (EUR) -

(BARTET: BAFEM) (XK - F2R)
(C++iE TR AR) (IR)
(UNIX#AE & A2) (EIR)

(B M5 AHR—IMit5RERE)
(ER - B20)

(Linux#E/E 2 A ET) (FIR)
(RARHF: HHMARER) (EIR - F20K)
(HEMBHFRER FEHE—CETHE)
(XM - BUR)

(HBAZAF) (ER)

R%atrhikit) (RR)

CHEMIAL) (FR - F4HR)
(omtm s e rER) (EXR)
(EEst RS ZfkteTE) (ER)
(HBBEEMEHAE) (F£R)

Jean Walrand #/327C

Behrouz Forouzan &/597t,

Kenneth H. Rosen #/597C

John L. Hennessy, David A. Patterson It
Andrew S. Tanenbaum #/487C

Richard A. Brualdi #/357C

William Stallings $/357C

C.]. Date /65

Bruce Eckel #/587T

Brian W. Kernighan, Rob Pike #/227C
Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer

Widom #/427%
Douglas E. Comer #/235L

Andrew S. Tanenbaum /387
W. Richard Stevens %/497C
Radia Perlman /367

W. Richard Stevens /39T

Bruce Eckel #/695L

Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides %/387

Gary R. Wright,W. Richard Stevens /697,

W. Richard Stevens %/287C

Jef Raskin /285

Ravi Sethi /39T
Bjarne Stroustrup #/297C
Sarwar #/497C

William Stallings /455

Gary J. Nutt £/327¢

Ronald Graham %-/497¢,

James D. Foley, Andries Van Dam, Steven K. Feiner,
John F. Hughes #/887C

Alistair Cockburn /257

John W. Satzinger, Robert B. Jackson, Stephen D. R 'rd
/607

Parsons Oja &/557

Guru #/687

Stephen R. Schach %

William A. Shay %

(HFEHRBERER) (EK) John M. Yarbrough #

(2%) (EXHR) Hagan #
($RA%REELAE) (£R) Giarratano, Riley %
(% RELEFR) (EXMK) Kenneth C. Louden ¥
GrEZ#F3)) (%308) Sipser %

SAGRET S 471

(RARBEAIHEML) (ER) Ramon A Mata-Toledo £/26%,
CGHEMA RSB TEERE) (XEX]K) Nicholas Carter /307
(GHERENFITEERE) (EXR - $204) Zhigang Xiang £/357
(HBELEHIBMEBE—Tava B THR) (EXUR) John R. Hubbard /387,

(Cr+HB T MEME) (IR - $2IR) - John R. Hubbard #/39.55%,
(BRHEALITMEME) (EXR) J.Archer Harris /257

(lavaB ARt THEML) (KX) John R. Hubbaro #/287
GHEnAFFTMEME) (ER) Ramon A. Mata-Toledo /30,
(HBELMTMEBE—CrriB THE) (ER) John R. Hubbard ¥/387¢
(HRHLRAGEME) (EXK) David A. Gustafson ¥
CGHAMR LS T B) (ESR) Ed Tittel 3

CGHEmgw7ME ML) Pauline K. Cushman #/# #4 %$/297%
{ Visual Basic 442 5] 8 b5 #%) Byron S. Gottfried /)8 /8 %i%/297,
(RAMBEAEIHEL ML) Ramon A. Mata-Toledo /8 & B %i%/197,
(Java A2 M55 M) Hubbard #/X5%& $i%/29%
(C++HBAETHEME) John R. Hubbard F/# % it %%/39%
(HBLEMTHEBE—Tavait TR) John R. Hubbard &/ B ¥ %%/397,
CGHALB YT M5 B) Zhigang Xiang ¥/8 F# $i%/297

{SQL %I M5 ML) Mata Toledo #/34 & & %£i%/297,

M

Contents

I INTRODUCTION |

I.I Why Compilers? A Brief History 2

1.2 Programs Related to Compilers 4

.3 The Translation Process 7

1.4 Major Data Structures in a Compiler 13

1.5 Other Issues in Compiler Structure 14

I.6 Bootstrapping and Porting 18

1.7 The TINY Sample Language and Compiler 22

1.8 C-Minus: A Language for a Compiler Project 26
Exercises 27 Notes and References 29

1 SCANNING 31 o ,,

2.1 The Scanning Prdéqss' 32

2.2 Regular Expressions 34

2.3 Finite Automata 47

24 From Regular Expressions to DFAs 64

2.5 Implementation of a TINY Scanner 75

2.6 Use of Lex to Generate a Scanner Automatically 8|
Exercises 89 Programming Exercises 93
Notes and References 94

3 CONTEXT-FREE GRAMMARS AND PARSING 95

3.1 The Parsing Process 96

3.2 Context-Free Grammars 97

3.3 Parse Trees and Abstract Syntax Trees 106

34 Ambiguity 114

3.5 Extended Notations: EBNF and Syntax Diagrams 123
3.6 Formal Properties of Context-Free Languages 128
3.7 Syntax of the TINY Language 133

Exercises 138 Notes and References 142 i

iv CONTENTS

4 TOP-DOWN PARSING

4.
42
43
44
45

5 BOTTOM-UP PARSING

5.1
5.2
53
54
5.5
5.6
5.7

6 SEMANTIC ANALYSIS

6.1
6.2
6.3
64
6.5

143

Top-Down Parsing by Recursive{Descent 144

LL(1) Parsing 152 '

First and Follow Sets 168 ,

A Recursive-Descent Parser for the TINY Language 180
Error Recovery in Top-Down Parsers 183

Exercises 189 Programming Exercises 193

Notes and References 196

197

Overview of Bottom-Up Parsing 198

Finite Automata of LR(0) items and LR(0) Parsing 201
SLR(1) Parsing 210 '
General LR(1) and LALR(1) Parsing 217

Yacc: An LALR(1) Parser Generator 226

Generation of a TINY Parser Using Yacc 243

Error Recovery in Bottom-Up Parsers 245

Exercises 250 Programming Exercises 254
Notes and References 256

257

Attributes and Attribute Grammars 259
Algorithms for Attribute Computation 270

The Symbol Table 295

Data Types and Type Checking 313

A Semantic Analyzer for the TINY Language 334
Exercises 339 Programming Exercises 342
Notes and References 343

T RUNTIME ENVIRONMENTS 345

7.1
72

73

74
75
7.6

Memory Organization During Program Execution 346
Fully Static Runtime Environments 349

Stack-Based Runtime Environments 352

Dynamic Memory 373

Parameter Passing Mechanisms 381

A Runtime Environment for the TINY Language 386

Exercises 388 Programming Exercises 395
NAsac a‘ntl R afarancace QL

CONTENTS v

§ CODE GENERATION

8.1
8.2
8.3
84
8.5
8.6
8.7
88
8.9
8.10

391

Intermediate Codé and Data Structures for Code Generation 398
Basic Code Generation Techniques 407 .
Code Generation of Data Structure References 416
Code Generation of Control Statements and Logical Expressions 428
Code Generation of Procedure and Function Calls 436
Code Generation in Commercial Compilers: Two Case Studies 443
TM: A Simple Target Machine 453
A Code Generator for the TINY Language 459
A Survey of Code Optimization Techniques 468
Simple Optimizations for the TINY Code Generator 481
Exercises 484 Programming Exercises 488
Notes and References 489

AppendixA: A COMPILER PROJECT 491

Al
A2
A3
A4
AS

Lexical Conventions of C— 491

Syntax and Semantics of C— 492

Sample Programs in C— 496

A TINY Machine Runtime Environment for the C— Language 497
Programming Projects Using C— and TM 500

Appendix B: TINY COMPILER LISTING 502
Appendix : TINY MACHINE SIMULATOR LISTING 545

Bibliography 558
Index 562

Chapter |

Introduction

1.1 Why Comepilers? A Brief 1.5 Other Issues in Compiler
" History Structure
1.2 Programs Related to 1.6 Bootstrapping and Porting
Compilers 1.7 The TINY Sample Language
1.3 The Translation Process and Compiler
1.4 Major Data Structures in a 1.8 C-Minus: A Language for a
Compiler Compiler Project

Compilers are computer programs that translate one language to another. A com-
piler takes as its input a program written in its source language and produces an
equivalent program written in its target language. Usually, the source language is a
high-level language, such as C or C++, and the target language is object code
(sometimes also called machine code) for the target machine, that is, code written
in the machine instructions of the computer on which it is to be executed. We can
view this process schematically as follows:

Source

Target
Program

Program

A compiler is a fairly complex program that can be anywhere from 10,000 to
1,000,000 lines of code. Writing such a program, or even understanding it, is not a
simple task, and most computer scientists and professionals will never write a com-
plete compiler. Nevertheless, compilers are used in almost all forms of computing,
and anyone professionally involved with computers should know the basic organiza-
tion and operation of a compiler. In addition, a frequent task in computer applica-
tions is the development of command interpreters and interface programs, which
are smaller than compilers but which use the same techniques. A knowledge of
these techniques is, therefore, of significant practical use.

It is the purpose of this text not only to provide such basic knowledge but also
to give the reader all the necessary tools and practical experience to design and pro-

2 CHAPTER 1 / INTRODUCTION

gram an actual compiler. To accomplish this, it is necessary to study the theoretical
techniques, mainly from automata theory, that make compiler construction a man-
ageable task. In covering this theory, we do not assume that the reader has previous
knowledge of automata theory. Indeed, the viewpoint taken here is different from
that in a standard automata theory text, in that it is aimed specifically at the com-
pilation process. Nevertheless, a reader who has studied automata theory will find
the theoretical material more familiar and will be able to proceed more quickly
through those sections. in particular, Sections 2.2, 2.3, 2.4, and 3.2 may be skipped
or skimmed by a reader with a good background in automata theory. In any case,
the reader should be familiar with basic data structures and discrete mathematics.
Some knowledge of machine architecture and assembly language is also essential,
particularly for the chapter on code generation.

The study of the practical coding techniques themselves requires careful plan-
ning, since even with a good theoretical foundation the details of the code can be
complex and overwhelming. This text contains a series of simple examples of pro-
gramming language constructs that are used to elaborate the discussion of the tech-
niques. The language we use for this discussion is called TINY. We also provide (in
Appendix A) a more extensive example, consisting of a small but sufficiently complex
subset of C, which we call C-Minus, which is suitable for a class project. In addition
there are numerous exercises; these include simple paper-and-pencil exercises,
extensions of code in the text, and more involved coding exercises.

In general, there is significant interaction between the structure of a compiler
and the design of the programming language being compiled. In this text we will only
incidentally study language design issues. Other texts are available that more fully
treat programming language concepts and design issues. (See the Notes and Refer-
ences section at the end of this chapter.)

We begin with a brief look at the history and the raison d’étre of compilers,
together with a description of programs related to compilers. Then, we examine the
structure of a compiler and the various translation processes and associated data
structures and tour this structure using a simple concrete example. Finally, we give
an overview of other issues of compiler structure, including bootstrapping and port-
ing, concluding with a description of the principal language examples used in the
remainder of the book.

LI WHY COMPILERS? A BRIEF HISTORY

With the advent of the stored-program computer pioneered by John von Neumann in
the late 1940s, it became necessary to write sequences of codes, or programs, that
would cause these computers to perform the desired computations. Initially, these pro-
grams were written in machine language —numeric codes that represented the actual
machine operations to be performed. For example,

C7 06 0000 0002

represents the instruction to move the number 2 to the location 0000 (in hexadecimal)
on the Intel 8x86 processors used in IBM PCs. Of course, writing such codes is
extremely time consuming and tedious, and this form of coding was soon replaced by

