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Infinite Sequences
and Series

In the last section of this chapter you are
asked to use a series to derive a formula
for the velocity of an ocean wave. © Epic Stock / Shutterstock

Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno’s
paradoxes and the decimal representation of numbers. Their importance in calculus stems from Newton’s
idea of representing functions as sums of infinite series. For instance, in finding areas he often integrated
a function by first expressing it as a series and then integrating each term of the series. We will pursue his
idea in Section 11.10 in order to integrate such functions as e~*". (Recall that we have previously been
unable to do this.) Many of the functions that arise in mathematical physics and chemistry, such as Bessel
functions, are defined as sums of series, so it is important to be familiar with the basic concepts of con-
vergence of infinite sequences and series,
Physicists also use series in another way, as we will see in Section 11.11. In studying fields as diverse
- as optics, special relativity, and electromagnetism, they analyze phenomena by replacing a function with
the first few terms in the series that represents it. -




690 CHAPTER 11 INFINITE SEQUENCES AND SERIES

m Sequences

(a)

(b)

(¢)

@

(=
§

A sequence can be thought of as a list of numbers written in a definite order:
Aly, A2, A3, A4y vy Qpyoas

The number a, is called the first term, a, is the second term, and in general a, is the nth term.
We will deal exclusively with infinite sequences and so each term a, will have a succes-
SOI @yt 1.

Notice that for every positive integer n there is a corresponding number a, and so a
sequence can be defined as a function whose domain is the set of positive integers. But we
usually write a, instead of the function notation f(n) for the value of the function at the
number n.

NOTATION The sequence {a,, as, as, . . .} is also denoted by
{a,} or {a.}n=i

Some sequences can be defined by giving a formula for the nth term. In the
following examples we give three descriptions of the sequence: one by using the preced-
ing notation, another by using the defining formula, and a third by writing out the terms
of the sequence. Notice that n doesn’t have to start at 1.

gt 1234  »
n+1], "on+1 2’3745 n+17""

—1)"(n+1)} PR GIUES), {_33
3" 3'9

45 e+ }

(Vn =31}, ay=yn—3,n=3 {0,1,v2,3,....v/n-3,...}

{

cosﬂm a =cosﬂ n=0 1—3l0 cosﬂ o
6 n 67 = N 2,2, y v ey

n=0

2 GV 4] Find a formula for the general term a, of the sequence

3.4 5 6 7
5" 257125° 625731257

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

4 5 6 7

3
a, = —_— a = ——— azy = —— as = ———— 5
5

25 T 125 625 7 3125

Notice that the numerators of these fractions start with 3 and increase by 1 whenever we
go to the next term. The second term has numerator 4, the third term has numerator 5; in
general, the nth term will have numerator n + 2. The denominators are the powers of 5,
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SECTION 11.1  SEQUENCES 691

S0 a, has denominator 5". The signs of the terms are alternately positive and negative,
so we need to multiply by a power of —1. In Example 1(b) the factor (—1)" meant we
started with a negative term. Here we want to start with a positive term and so we use
(=" "or (—1)"*'. Therefore

n+2
a, = ()" —
(1

[ CTHIE] Here are some sequences that don’t have a simple defining equation.

(a) The sequence {p,}, where p, is the population of the world as of January 1 in the
year n.

(b) If we let a, be the digit in the nth decimal place of the number e, then {a,} is a well-
defined sequence whose first few terms are

{7,1,8,2,8,1,8,2,8,4,5, ...}
(¢) The Fibonacci sequence { f,} is defined recursively by the conditions
fi=1 L=1 i=f + fua n=3
Each term is the sum of the two preceding terms. The first few terms are
{1,1,2,3,5,8,13,21,...}

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 83). S

A sequence such as the one in Example 1(a), a, = n/(n + 1), can be pictured either by
plotting its terms on a number line, as in Figure 1, or by plotting its graph, as in Figure 2.
Note that, since a sequence is a function whose domain is the set of positive integers, its
graph consists of isolated points with coordinates

(1,a) (2, a2) (3, a3) . (n, a,)

From Figure 1 or Figure 2 it appears that the terms of the sequence a, = n/(n + 1) are
approaching 1 as n becomes large. In fact, the difference

n 1

1 = -
n+1 n+1

can be made as small as we like by taking n sufficiently large. We indicate this by writing

. n
lim =1
n—x pn + |

In general, the notation

lima, =1L

n-—oc
means that the terms of the sequence {a,} approach L as n becomes large. Notice that the
following definition of the limit of a sequence is very similar to the definition of a limit of
a function at infinity given in Section 2.6.
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[Il Definition A sequence {a,} has the limit L and we write

lim a, = L or a,—L as n— =

n—=

if we can make the terms a, as close to L as we like by taking n sufficiently large.
If lim, .- a, exists, we say the sequence converges (or is convergent). Otherwise,
we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the

limit L.
a, A a, A
L N : * L O = N ¥ -
FIGURE 3 . d
Graphs of two .
sequences with o 7' 5 —
lim a,= L

A more precise version of Definition 1 is as follows.

Iz] Definition A sequence {a,} has the limit L and we write

lima, =L or a,— L as n — x
n—x

Compare this definition with Definition 2.6.7.
if for every € > 0 there is a corresponding integer N such that

if n>N  then & —L| =&

Definition 2 is illustrated by Figure 4, in which the terms a,, a., as, . . . are plotted on a
number line. No matter how small an interval (L — &, L + &) is chosen, there exists an N
such that all terms of the sequence from ay+; onward must lie in that interval.

: a, a; a, ag {aNH (1N+2’ ay a, as ay a,
FIGURE 4 0 L—& L bte

Another illustration of Definition 2 is given in Figure 5. The points on the graph of {a, }
must lie between the horizontal lines y = L + £ and y = L — ¢ if n > N. This picture
must be valid no matter how small ¢ is chosen, but usually a smaller & requires a larger N.

YA
0t ) y=L+e
il . . .
. y= — &
A -
FIGURE 5 1 2134 N



