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Preface

This book presents a concise and comprehensive introduction to the fun-
damentals of linear algebra. The subject is developed so that it is accessible
to the students of varied backgrounds. A very basic algebra and elementary
properties of matrices and determinants are prerequisites. However, almost
all the material that is needed for the text is given in the first chapter with
reasonable details to make the book as much self contained as possible. A
fairly large number of examples are included at the end of each section for
conceptual understanding. Examples are also used to illustrate the com-
putational aspect and to explore further related results. Each section ends
with a collection of exercises with different levels of difficulty that help the
reader to check their understanding and to apply it to concrete problems.

Chapter 2 deals with the elementary concepts like vector space, sub-
space, basis and dimension. Although the emphasis here is on finite di-
mensional vector spaces, examples of infinite dimensional vector spaces are
also included to highlight the differences between these two classes. Linear
transformations, isomorphism theorems, the matrix of a linear transforma-
tion, linear forms and dual spaces are also discussed in this chapter.

Chapter 3 is analysis of a single linear operator on a finite dimensional
vector space. Characterizations of diagonalizable and triangulable operators
appear in this chapter. The concept of generalized eigenvectors is used to
obtain an inductive procedure for constructing a Jordan basis for a triangu-
lable linear operator. The last section is about the rational canonical form
and again the approach is algorithmic.

Chapter 4 is about finite dimensional inner product spaces. This chapter
treats with normal and self adjoint operators and the spectral decomposi-
tion. Also it deals with nonnegative operators and polar and singular value
decomposition.

The last chapter is on bilinear forms and extends the results of inner
product spaces to bilinear spaces. The main thrust of this chapter is to
classify finite dimensional reflexive bilinear spaces.

VIVEK SAHAI
VIKAS BIST
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CHAPTER 1

Preliminaries

The purpose of this chapter is to give a brief account of a number of
useful concepts and facts which are required in the text. The reader may be
familiar with the contents of this chapter. Nonetheless, this may serve as a
short review, and an introduction to the basic notation.

1. Matrices

We denote by K™*™ the set of all matrices of size m x n, m rows and n
columns, whose entries are from the field K. If A € K™*" then we denote
its (¢,7)-th entry by [A]ij. A matrix of size n x 1 (respectively, 1 x n) is
called a column (respectively, row) vector of length n. A square matrix
is a matrix of size n x n.

The sum of two matrices is allowed whenever both are of the same size;
for A, Be K™*", A+ B € K™*" and

[A+B);; =[A]; +[B];;. i=1....m j=1....n

i) i7"

The product AB of matrices A and B is defined if the number of columns
of A is equal to the number of rows of B; for A € K"*1 B € K9*",
AB € K™*" and

q

[AB),; =Y [Al4[Bl;. i=1....m, j=1,....n.
k=1

The matrix addition and the matrix multiplication are associative:
(A+B)+C=A+(B+C), forall A, B,C € K™*"
and
(AB)C = A(BC). forall Ae K"™*P Be KI'1,C € K9*".

But the matrix addition is commutative and the matrix multiplication is
not. We also have distributive laws:

AB+C)=AB+ AC, forall Ae K™*1 B,C € K",

and
(A+ BYC = AC + BC, for all A,Be K™, C € K",

1
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The elements of the field I are called scalars. Multiplication of an
m x n matrix A by a scalar A is a matrix AA of size m x n such that

Al = A4, i=1,..., Wy J = Lyssaq e

ij o
The following are basic properties of scalar multiplication. The reader
can easily verify them.

(A4 p) A=A A+ uA,
AMA+B)=AA+ AB,
(Au) A= A(ud),
1A= A,

for all A\, u € K and A, B € K™*".

A sum of the form Z;zl AiA;, where \j,..., A, € K and Ay,..., A, €
K™*" is called a linear combination of matrices. If Ay,..., A, are column
(respectively, row) vectors, then we call it a linear combination of column
(respectively, row) vectors.

Let A be an m x n matrix. A submatrix of A is a matrix obtained
from A by deleting its some rows or some columns or both. A partition of
A is its expression into smaller submatrices:

An - Aps
A= :
Arl e Ars
where each A;; is an m; x n; submatrix of A, and m; + --- + m, = m,

ny +---+ns =n. A partitioned matrix is also called a block matrix.
For example, let

1 329 2 5 3

3978 367

A=|12 001 3 2 7

76 543 21

| 7 8 78 9 3 1]
3 9 3
Then | 0 1 7 | is a submatrix of A obtained by removing rows 2 and 4,

8 8 1

and columns 1, 3, 4 and 5.

| A A A

A=
Ag1 Az A

is a partition of A, where
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Let A, B € K™*™ and let
Ay oo Ags Byy -+ Bis
A=| | B=| : :
A - Apg By -+ Bis
Aij,Bij € K™>X™ my+---4+m, =m, ny +---+ns =n. In this case we
say that the block matrices A and B are of the same type. Clearly the sum
A + B is obtainable by adding submatrices blockwise:
A+ By - Ais+ Bis
A+ B= : :
A+ Bn o+ Aps+ By
In the case of multiplication of two block matrices, the partition should

be conformable, that is, it is such that the multiplication of submatrices
make sense. If A € K™*7 is a block matrix:

A o A
A= :
Ar1 -0 Ars
with A;; € K™% my+---+m, =m, q1 +---+¢s = q. If B € K7™ then
the conformable partition of B with respect to A for AB is

By, -+ B
B=| : A
Bsy --+ Bst
where B;; € K%*™  ny + --- 4+ ny = n. In this case we obtain
Cn -+ Cu
AB=| : s
Ci - Cn

where Cij = > ¢ _; AiBi;j-
A square matrix A is called upper triangular (respectively, lower
triangular) if [A];; = 0 for i > j (respectively, © < j). A square matrix
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A is called a diagonal matrix if it is upper triangular as well as lower
triangular, that is, [A],; = 0 for i # j.

A block matrix
An - A
A= : s
Arl T Arr
with each A;; a square matrix, then:

(i) A is block diagonal if A;; = 0 for i # j;

(ii) A is block upper triangular if 4;; = 0 for i > j;

(iii) A is block lower triangular if A;; = 0 for ¢ < j.

If A is an n x n diagonal matrix with diagonal entries Ay,..., A,, then
we write A = diag(A1,...,An). Similarly, A = diag(Ay,..., A;), where each
A; is a n; X n; matrix, denotes a block diagonal matrix with diagonal entries
Ay, ... A

The n x n matrix I,, = diag(1,...,1) is the identity matrix. If A €
K™*" then I,,A = A = AI,.

An n xn matrix A is said to be invertible if there exists an n x n matrix
B such that AB = I, = BA. The matrix B is called an inverse of A. If A
is invertible then it has a unique inverse. Indeed, if B and C' are inverses of
A, then B = BI, = B(AC) = (BA)C = I,C = C. We denote the inverse
of A by A™1. Clearly, (A_l)_1 = A,

Every square matrix is not invertible. If A is a square matrix whose
r—th row is zero, then for any matrix B, the r—th row of AB is also zero,
and so A is not invertible. The sum of two invertible matrices need not be
an invertible matrix. However, if A and B are invertible matrices, then so
is AB, and

(AB)"' =B71A7L,

Thus, a finite product of invertible matrices is also an invertible matrix.

The transpose of an m x n matrix is an n x m matrix A* such that
[At] i = [A] ji- If A€ C™ ", then A* denotes the conjugate transpose of
A, that is, [A*];; = [X]ﬁ, where bar denotes the conjugate of a complex
number. A square matrix A is symmetric (respectively, Hermitian) if
A! = A (respectively, A* = A), and skew—symmetric (respectively, skew—
Hermitian) if A = —A (respectively, A* = —A).

The following proposition gives elementary properties of transpose.

PROPOSITION 1.1. Let K be a field. If A,B € K™*"and A € K, then
(i) (4" = 4;
(ii) (A+ B)" = A + BY;
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(iii) (AA)" = AAL.
If Ae K™*1 and B € K7™, then
(iv) (AB)" = BtAt.

PROOF. (i) [(At)t]ij = [A"]jz. = [A];; foralli=1,...,m, j=1,...,n.

Hence (At)t = A. (ii) and (iii) are easy.

(iv) [(AB)t]ij = [AB]jz' = ZZ=1 [A]jk [B]ki = Z:l [Bt]ik [At]kj =
[B'A"],.. Hence (AB)" = BtAt. O

i
Similar statement hold for conjugate transpose.

PRrROPOSITION 1.2. If A, B € C™*™, then for A € C:
(i) (A")" = 4;
(ii) (A+ B)" = A* + B*;
(iii) (AA)* = XA*.
If A e C™*1 and B € CT*", then
(iv) (AB)* = B*A*.

Let E (m,n),; be an m xn matrix whose (i, j)-th entry is 1 and all other
entries zero, and let e (n), be a column vector of length n with 1 at i~th row
and all other entries zero.

PROPOSITION 1.3. Let A € K™*™.

(1) Ae(n); is the j-th column of A;
(i) e(m): A is the i—th row of A;
(i) e (m)! Ae (n); = [Al;;
(iv) e(n)te(n); = 8;; (Kronecker delta);
(v) e(m);e ("); =F (man)ij'

ProOOF. Exercise. O

We normally do not write labels m and n for E (m,n),; and e(n); as
the size of these matrices is generally clear from the context. In K™*™ the
mn matrices E;; (i =1,...,m, j =1,...,n) are called the matrix units.
A matrix A € K™*™ can be uniquely expressed as a linear combination of
these mn matrix units:

In K™*™,
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This identity is a consequence of Proposition 1.3 and the associativity of
matrix multiplication: FE;;FE,s = (616]) (er ) = € (e_tjer) e_‘f, = jreieg =
6eris-

If A is a square matrix, then the trace of A, denoted by tr A, is the sum
of diagonal entries of A. If A € K™*™ then tr A € K. Thus

trA = z": (Al
i=1

PROPOSITION 1.4. Let K be a field, let A € K and A,B,P € K"*",
where P is invertible. Then:
(i) tr(A+ B) = tr(A) + tr(B);
(ii) tr(AA) = A tr(A);
(iii) tr(AB) = tr(BA);
(iv) tr(P'AP) = tr(A).

PROOF. (i) and (ii) are easy.

(iii)
tr(4B) =} [ABl;=)_|>_ [Al;[Bl;
i=1 =1 \j=1
j=1 \i=1 Jj=1
(iv) By (iii), tr (P!AP) = tr ((AP) P71) = tr (A). 0O

2. Elementary operations on matrices

The following operations on rows (respectively, columns) of a matrix are
called elementary row (respectively, column) operations:

I interchange of two rows (respectively, columns);
II multiplication of a row (respectively, column) by a nonzero scalar;
IIT adding to a row (respectively, column) a scalar multiple of another
row (respectively, column).

We first show that elementary row (respectively, column) operations
on an m X n matrix A can be performed by premultiplying (respectively,
postmultiplying) A by a suitable m x m (respectively, n x n) matrix.

Observe that if E,s is an m x m matrix unit, then by Proposition 1.3,
E,s = e,el, and the k—th row of E A is e}, (ErsA) = (ehe,) el A = fiel A.
Thus, E,sA is an m x n matrix whose r—th row is identical to the s—th row
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of A, and all other entries zero.

O ess 0 'l
0o .- 0
E.sA=| [Al, - [A]l,, | = r-throw.
0 0 |

Similarly, if E, is an n X n matrix unit, then the k—th column of AE,; is
(AE;s) ex = Aey (eiek) = 04, Ae,. Thus, AE,; has s—th column identical to
the r—th column of A, and all other entries zero.

0 - 0 [4, 0 -~ 0
AE,s = | : : : :
0 - 0 [4,, 0 - 0

.

s-th column

Define the following n x n square matrices:

1. £(r,s), the matrix obtained by interchanging the r—th and s-th
row of the identity matrix, called an elementary permutation
matrix. £ (r,8) = I + Eys + Egr — Epp — Fgg;

2.6 N)=In+(AN—1)E., A #0, called an elementary dilation;

3. &s(N\) = I, + AE,s, r # s, called an elementary transvection.

We call the above matrices as elementary matrices. Elementary ma-
trices are invertible; and the inverse of an elementary matrix is an elemen-
tary matrix of the same type: £(r,s)”! = £(r,s), & (N)7! = & (A1),
Ers (N1 = £ (=\). A matrix which is a product of elementary permu-
tation matrices is called a permutation matrix. If P is a permutation
matrix, then P! = P*. Thus, using the above observations, we can prove
the next result.

PROPOSITION 2.1. Let A be an m X n matriz.

(i) € (r,s) A (respectively, AE (r,s)) is an m X n matriz which is same
as A except that the r—th and s—th rows (respectively, columns) are
interchanged, that is, it is ootained from A by elementary row (re-
spectively, column) operation of type L

(ii) & () A (respectively, AE, (X)) is an mxn matriz which is same as A
except that the r—th row (respectively, column) is multiplied by A, that
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is, it is obtained from A by applying elementary row (respectively,
column) operation of type II.

(iii) &qs(A)A (respectively, AErs(N)) is an m X n matriz which is same as
A except that the r—th row (respectively, s—th column) is replaced by
r—th row (respectively, s—th column) of A plus A times the s—th row
(respectively, r—th column), that is, it is obtained from A by applying
elementary row (respectively, column) operation of type III.

Obviously, we are premultiplying A by elementary matrices of size mxm,
and postmultiplying A by elementary matrices of size n x n.
An m x n matrix is said to be a row reduced echelon matrix if:

(i) all zero rows are in the bottom position;
(ii) the leading entry, that is, the first nonzero entry, of each nonzero

row is 1.

(iii) if the first ¢ rows are nonzero, and the leading entry of each i-th
row is at the k;—th column, for 7 = 1,...,t, then all other entries of
k;—th column are zero, and k; > k;_1,71=2,...,t.

The zero matrix is deemed to be a row reduced echelon matrix. Examples
of row reduced echelon matrices are

10031 1y g g

[1 23 4], |00 1 2],
E 6o b 000001
00000O0O

and the identity matrix I,,.

Matrices A and B of the same size are said to be row equivalent if one
can be obtained from the other by elementary row operations. Thus, A and
B are row equivalent if and only if there are elementary matrices P, ..., Pk
such that B = P, --- P A.

THEOREM 2.2. An m X n matriz A is row equivalent to a row reduced
echelon matriz of size m x n.

PRrROOF. Clearly, we can assume that A is a nonzero matrix. Among
all nonzero rows of A select a row whose leading entry is at the left most
column j;. Thus, all the columns of A which are on the left of column j;
(if any) are zero. Interchange this row with the first row of A (if required),
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and we have the matrix A; of the following form:

0 0 a; x *
A= | P Dl a Ao
0 -+ 0 @p * -+ *
\

j1-th column

x denotes the entries of A; whose precise values are of no concern.
Multiply the first row by afl so that the leading entry of the first row
is 1. Then apply elementary row operations of type III to get As:

0 0 1 =x *
0 0 0 = *
Ay =
0 0 0 ¥ eee *
N

j1-th column

If there are no nonzero rows below the first row of A, then it is a row reduced
echelon matrix. Otherwise, among all nonzero rows of Az which are below
the first row select a row whose leading entry is at the left most column ja.
Thus, all columns of A; which are on the left of jo-th columa have all their
entries zero except in the first row. Interchange this row with the second
row of A, and we have:

0 0 1 =« * by * *
0 - 00 0 -+ 0 by * --- =%
Az = | | L. L. |, b2 #O.
0 . 0 O O 0 bm * *
{

71-th column jo-th column
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Next, multiply the second row by b, ! so that the leading entry of the second
row is 1. Then apply elementary row operations of type III to get:

0 --- 0 1 =% * 0 *x - %
0 --- 000 0 1 % --- =x
Ag=|0 -~ 0 00 0 0 = --- =«
[0 -~ 000 - 00 * -+ %

3

71-th column j2-th column

If all the rows below the second row of A4 are zero then Ay is a row reduced
echelon matrix. Otherwise, we continue this procedure to get to reduce A
to a row reduced echelon matrix. ’ O

If Ae K™*™ is row equivalent to a row reduced echelon matrix E then
E is called row reduced echelon form of A. Next theorem proves that
row reduced echelon form for a given matrix is unique.

THEOREM 2.3. Row reduced echelon form for a matriz is unique.

PROOF. Let A € K™ ™ and let R and S be row reduced echelon forms
of A. Then there is an invertible m x m matrix M such that MR = S.

Let I-th column be the first column in R and S which is not the same,
that is, Re; = Se;, for j =1,2,...,l— 1 and Re; # Se;. Let R’ be a matrix
such that it has all the coiumns with leading entry which appear in R before
the l-th column of R. Thus if there are g leading entries before the [-th
column of R, then R = [ er - eq Re ], an m X (g + 1) matrix whose
first ¢ columns are e1,...,eq and (g + 1)-th column is the I-th column of R.
Since these are also the columns of S appearing exactly at the same place,
write S’ = [e; -+ e, Se ] The matrices R’ and S’ are row reduced
echelon forms and MR’ = S’. Therefore Me; =¢; fori=1,...,q.

It follows by the definition of the row reduced echelon form that Re; and

Se; are either both of the form [ g ], a € K19; or one of this type and the
other eg41.

If Re; = [ S ], c € K9 and Se; = eg41, then equating the (g + 1)-th
columns of MR’ and S":

C C
eq+1=Squ+l:MRleq+1:M[0]=[O}y
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a contradiction. Similar proof when Re; = eg41. Finally, if Re; = [ (c) ] and

8 ] = MR'eg41 = S'eg1 = [ i)l ], and so

¢ =c. Hence, R and S are identical matrices. O

Se; = [g],c,c’eK", then [

EXAMPLE 2.1. We illustrate the above procedure by reducing

0o 2 2 -1 3
1 25 0 7
A‘147 0 13
3 -2 7 2 3

to row reduced echelon matriz.

Since, there is a nonzero entry at the first column and the second row,
we interchange the first and second rows:

1 25 0 7
0 22 -1 3
A=EQDA=| 1 4 7 o 13
3 27 2 3

The leading entry of the first row is already 1. Now we convert all other
entries of the first column to zero. We multiply the first row by —3 and add
to the fourth row, and multiply the first row by —1 and add to the third
row. Thus, we have:

1 2 5 0 7
0 2 2 -1 3

= E31(—1)E4(— =
Ap = E31(—1)E41(—3) Ay 6 2 2 0 6
0 -8 -8 2 —18

For the next step, we can select any of the rows below the first row. Since all
elements of the third row are multiple of 2, the leading entry, computations

are easier with this row. Therefore, we prefer to interchange the second and
the third rows:

1 2 5 0 7
0 2 2 0 6

As = £(2,3)Ay =
3=£(2,3)4, 0 2 2 -1 3
0 -8 -8 2 18



