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Preface

My aim in writing this book has been to give a systematic account of those parts of
random measure theory which do not require any particular order or metric structure
of the state space. The main applications are of course to random measures on Eucli-
dean ‘spaces, but since most proofs apply without changes to the case of arbitrary
locally compact second countable Hausdorff spaces, I have chosen to work throughout
within this more general framework.

By a random measure on a topological space © is meant a measurable mapping
from some abstract probability space into the space IR of locally finite measures u on
@&, where the o-field in It is taken to be the one generated by the mappings u — uB for
arbitrary Borel sets B in ©. The most convenient way of treating simple point pro-
cesses on G, i.e. locally finite random subsets of ©, is in terms of the induced counting
random measures, which motivates the study of integer valued random measures.
There are strong reasons, however, for widening the scope of study beyond the integer
valued case:

First of all, general random measures are indispensable within point process
theory itself. Thus they are needed to describe the asymptotic behavior of thinnings,
and they further play a basic role in the context of conditioning. Secondly, many
useful ideas and techniques of point process theory are equally important in the case
of arbitrary random measures, and many results have interesting extensions to the
general case. In particular, there exists an interesting analogy between certain results
for simple point processes and for diffuse random measures, respectively. Thus general
random measures appears to be the natural scope of a theory. A third reason is the
fact that general random measure theory is rapidly developing into a universal tool for
dealing with problems in possibly unrelated areas of probability, such as exchan-
geability, regenerative sets, stochastic geometry, and particle systems, just to men-
tion a few.

Due to the late development of the subject, the basic ideas of random measure
theory have not yet found their way into the standard textbook literature. In order
to develop an intuitive feeling for the subject, it may therefore be helpful for new-
comers in the field to start with some less demanding introductory text, like those by
Cox/IsuaM (1980), GRANDELL (1977) and NEvevu (1977). As with any other highly
developed branch of modern probability, a deeper understanding of random measure
theory requires a thorough knowledge of probabilistic measure theory, at the level of
e.g. BAUER (1972), BELLACH et al. (1978), BrLriNGsLEY (1979) or NEVEU (1969). For
the benefit of the reader, some general facts from topology, measure theory and pro
bability have been collected in an appendix.

The book reflects my own research in the area, both in spirit and in scope, and there
is very little overlap with other books in the field. (The monograph by MATTHES/
KErsTAN/MECKE (1978) is strongly recommended for supplementary reading!) Many
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classical results are presented here in extended form and with simple unified proofs
based on modern analytic, topological and measure theoretic arguments. Several
results appear in print for the first time. This applies especially to the conditioning
theory presented in the last three chapters, which was developed exlusively for the
present edition. (For this new edition, T have also made some additions and improve-
ments in previous chapters.) The exercises at the end of each chapter provide com-
plements to and extensions of results in the main text. -

Let me finally acknowledge my gratitude and debt to all those, whose interest,
encouragement and criticism have influenced my work in various ways. It all started
in the fall of 1971, when PETER JAGERS raised my interest in random measures by
organizing a seminar and a mini-conference on the subject, here in Goteborg. The
first edition of this book was based on my lectures during the spring semester of 1974
at the Statistics Department, University of North Carolina at Chapel Hill, where T
enjoyed great hospitality and benefitted from many valuable comments of the
audience. I am especially grateful to Ross LEADBETTER for his constant encourage-
ment and detailed criticism. Through the mail, I also enjoyed. the stimulating in-
terest and valuable advice of Prof. K. MarTHES. Since the appearance of the first
edition, I have benefitted from enumerable conversations on related matters, especially
with JAN GRANDELL and with scientists from GDR. Arax KaRr kindly provided a
long list of comments to the first edition, whereas PIETER VAN DER HOEVEN gave me
access to his as yet unpublished work and helped me to understand its subtleties.

On the personal level, these have been years of disasters and humiliation. Luckily

Erk and Awxr, my beloved children, provided moments of true happiness. My
heartfelt love goes to them. '

Géteborg in May 1982 Orav KALLENBERG
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1. Foundations

1.1. The basic spaces

Let © be a fixed locally compact second countable Hausdorff topological space,
(cf. 15.6 in the Appendix). Such a space is known to be Polish, i.e. there exists some
separable and complete metric ¢ in & generating the topology. Though we shall often
make use of such metrizations, it should be noticed that our definitions and results
never depend on any particular choice of g.

In @ we introduce the Borel algebra ¢, i.e. the ¢g-algebra generated by the topology,
and further the ring % consisting of all bounded (i.e. relatively compact) sets in .
We write J = J (&) for the class of all /-measurable functions f: & - R, = [0, o0)
(a notation to be retained for more general spaces &), and we let F, = F.() denote
the subclass of all functions in & which are continuous with compact support.

To simplify statements, we introduce three types of subclasses of &. By a DC-ring
(D for dissecting, C for covering) we shall mean a ring % < < with the property that,
given any B e & and any e > 0, there exists some finite cover of B by U-sets of
diameter less than ¢ (in any fixed metrization of ©). A DC-semiring is a semiring
J = & with the same property. (Recall that a semiring is a class J of sets which is
closed under finite intersections and such that any proper difference between J-sets
may be written as a finite disjoint union of sets in J.) Note that DC-rings and DC-
semirings exist and may even be chosen countable. (Indeed, the ring generated by a
countable base formed by bounded sets is a countable DC-ring.) On the line R, typical
DC-semirings and DC-rings are families of intervals and interval unions respectively,
hence our notations J and %. We shall finally say that a class £ <= & is covering if
every set B € & has a finite cover of £-sets.

Lemma 1.1. The notions of DC-semiring and DC-ring are independent of the choice
of metric p in €.

Proof. Consider two metrizations g and p’ of ©, and suppose that J = & is a DC-
semiring (or DC-ring) w.r.t. ¢’. To prove the DC-property w.r.t. p, let B e B and
€ > 0 be arbitrary. By 15.6.1, we may choose an open bounded set ¢ > B~ (B~ deno-
ting the closure of B), and since G~ is compact, the identity mapping of G onto itself
is uniformly continuous w.r.t. ¢ and g. It follows in particular that there exists some
&’ > 0 such that o(s, ) < & whenever s, t € G with ¢’ (s, t) < ¢’. From the compactness
of B-, it is further-seen that ¢’(B-, G°) > 0 (G° denoting the complement of &), and
so we may assume that & < o’(B~, G°). Now suppose that ' = J is a finite cover of
B by J-sets with p’-diameters < ¢’. Since we may discard any set whose intersection
with B is empty, we may assume that the covering sets are all subsets of (. But then
their g-diameters must be less than e. O

For any class § = B, let G(£) denote the smallest ring which contains ¢ and is
closed under bounded countable unions.
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Lemma 1.2. Let I < B be a DC-semiring. Then 6(J) = B.

Proof. For any compact set C = &, let G, G,, ... be bounded open sets satisfying
Gn | C, (cf. 15.6.1 for existence), and choose for each n € IV = {1, 2, ...} a finite cover
{I,;} = J of C which is contained in G,, (cf. the proof of Lemma 1.1). Then
C = U I, so we get C € 5(J). For a fixed compact ¢ = &, we now define

n g

D={BeF:BnCecd)},

and note that 9D contains & and is closed under proper differences and monotone limits.
Furthermore, it was shown above that 9 contains the class & of all compact sets, and
¢ being closed under finite intersections, it follows from 15.2.1 that 2 contains the
o-algebra o(8) generated by . Since o(6) = , this proves that & = 6(J). Conver-
sely, £ is clearly closed under bounded countable unions, so & = (). O

Say that a measure p on (&, &) is locally finite (or Radon) if uB < oo forall B € &,
and let M = IM(S) denote the class of all such measures. We further introduce the
subclass Nt = N(S) of all measures pe M with uBeZ,={0,1, 2,...}, BeAB.
Let M = M(S) and N = N (S) be the o-algebras in I and N respectively generated
by the mappings u — uB, B € &, (i.e. the smallest o-algebras making these mappings
measurable).

Given any p € M and f € F, we define the integral uf and the measure fu by

u=Jf6) pids); () B= [/ p(ds), BeR.

In the particular case when f equals the indicator 15 of B (being equal to 1 on B and
to 0 elsewhere) for some B € #, the measure fu = lpu is called the restriction of p to
B, and we write for brevity 1zu = Bu. The notations introduced above will also be
used for measures on more general spaces than &.

Lemma 1.3. The mapping u— uf of (M, M) or (R, H) into [0, 0o] is measurable
jor every f € F. If f € F 1s bounded, then u — fu is a measurable mapping of (M, M) or
RN, H) into (M, M), and in particular, i — Bu is a measurable mapping of (M, ) or
(M, H) into itself for every Be J.

Proof. The first assertion is true for simple f by the definition of 4 and o/, and it
follows in general by monotone convergence. The second assertion follows from the
first one by another application of the definition of 7. O

Lemma 1.4, Let I € B be a semiring with 6(J) = B. Then Jl and N are generated
by the mappings p — ul, I € I, and also by p — uf, f € Fe.

Proof. It is enough to consider <, the arguments for «/ being similar. Let A’ be
the g-algebra in It generated by the mappings u — ul, I € J, and note that J = &
implies /' = J(. Thus it remains to prove that J# < ', i.e. that the mapping
@ — uB is M -measurable for every B ¢ B. For this purpose, define

D = {BeRB:u— uBis M -measurable} ,

and note that 9 is closed under bounded monotone limits. Furthermore, 2 contains
the ring & of all finite unions of J-sets, since every such union may be taken to be
disjoint. Hence we may conclude from 15.2.2 that 2 S G(§) = d(J) = <8, which
yields the desired measurability of u — uB, B € &B. :

We next consider the o-algebra /' generated by all mappings u — f, f € Fo, and
note that </’ = </ by Lemma 1.3. To prove the converse relation, let C = © be
compact, and choose a sequence f,, f,, ... € F, satisfying fu | ¢, (cf. 15.6.1). Then

1.2. Random measures and point processes 13

pfn | uC, pe M, by dominated convergence, which proves the A" -measurability of
@ — uC. We may now complete the proof as in case of Lemma 1.2, defining for
fixed compact C

D= {Be F:u— pu(B nC)isA’-measurable} . O
Lemma 1.5, & < L.
Proof. By the definitions of // and «/" we have
NeMaR={MnR: MecM},

so it is enough to prove that N € /. Let % = B be an arbitrary countable DC-ring,
and define

M={ueM:pUcZ,,UclU}.

We intend to show that $t = M ; since clearly M €/, this will complete the proof.
Now N = M holds trivially, so it remains to prove that M — N. For this purpose,
define for fixed pu € M

D={BeAB:uBelZ}.

Since D is closed under bounded monotone limits and contains %, it is seen from
15.2.2 and Lemma 1.2 that D > 6(¥) = &B. Thus u € N, so we have indeed M < N.

1.2. Random measures and point processes

By a random measure or a point process on & we mean any measurable mapping of
some fixed probability space (2, 4, P) into (M, ) or (N, /) respectively. By Lemma
1.5, a point process may alternatively be considered as an t-valued random measure,
and conversely any a.s. %t-valued random measure coincides a.s. with a point process.
Thus we shall make no difference in the sequel between point processes and a.s.
N-valued random measures. Similarly, we shall allow a random measure to take
values outside N on a set 4 € A with PA = 0.

Lemma 1.6. The class of random measures (or point processes) on & s closed under
addition and under multiplication by R-valued (or Z.-valued respectively) random
variables. Furthermore, a series ¥ & of random measures (or point processes) s itself a

i
random measure (or point process) iff ¥, &B < oo a.s. for all B € B.
J
Proof. The first assertion follows immediately from the definition of «/ (/) and

the fact that the class of random variables is closed under addition and multiplication.
As for the second assertion, it is seen by monotone convergence that 3, & is g-additive

on B, and hence measure-valued. Moreover, the necessity of our condition follows

from the fact that £B < oo a.s. for any random measure & and any B € B. Suppose

conversely that ¥ &B < oo a.s., B¢ AB. Considering this inequality for all sets B
J

belonging to some countable covering class, it is seen that the exceptional P-null set
may be taken to be independent of B. Thus ¥ & € It (N) a.s. Finally, the measura-

J

bility of ¥ & follows from the fact that ¥ &B is a random variable for every
j i

Be &. ’ O
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The distribution of a random measure or point process & is by definition the pro-
bability measure P£~1 on (I, ) or (N, ) given by

(PEY)M = PELM) = P{lc M}, Medl or N .
We further define the intensity E& of & as the set function
(E§)B=E(¢B), Be&,

where E denotes the expectation or integral w.r.t. P. Note that E& is always a measure,
though it need not belong to M. We finally define the L-transform (L for Laplace)
L; of E by

L{f) =Ee~¥, fedF.

Note in particular that, for any k€ N and By, ..., By € &, the function
Lé(z tﬂ-B}) =E exp (— Z tjf_Bj) = LEB,,m,ﬁBk(tl’ ceoy tk) > t]’ wer y tk € R+ s
j J

is the elementary L-transform of the random vector ((B,, ..., £By).

Many important random measure distributions are defined most easily by means
of mixing. In the present context, the general measurability requirement 15.3.2 can
be relaxed as follows.

Lemma 1.7. Let (T, 7, Q) be a probability space and let &3, # € T, be a family of
random measures on &. Then the mixture of P51 w.r.t. Q existsiff Ley(f) is T -measurable
m P for every fe Fo

Proof. By 15.3.2. the mixture exists iff P{{; ¢ M} is J-measurable for every
M €M, so let us first assume that this condition is fulfilled. Then P{&,f < ) is
J -measurable for every f € F, and « € R, according to Lemma 1.3, and it follows by
the definition of the integral that Ley(f) = Ee—¢ is measurable for every f € Fo.

Conversely, suppose that Le,(f) is J -measurable for every f € F,. Then so is

Leos,, ... sonltis v » te) = Lep(X tfy)
I

for every ke IV, f;, ..., fr € F, and ty, ..., t € R, and scrutinizing the proof of the
uniqueness theorem 15.5.1 for multidimensional L-transforms, it is seen that
P{&ofy = @1, v, Eofry < a1} is T -measurable for any k¢ NV, fis ooy f €F5 and zy, ...,
zx € R.. We now introduce the class D of all sets M € J/ such that P{Ese M} is J -
measurable, and note that D contains 9t and is closed under proper differences and
monotone limits. Furthermore, it was seen above that 2 contains the class € of all
sets of the form

{pedl: pfy S @y oo pf S}, ke N, fiyenyfr€ Fe, Zyy oo s T € By,

and the latter class being closed under finite intersections, it follows by 15.2.1 that
D > (). Since () =M by Lemma 1.4, this means that P{£;¢ M} is indeed
J -measurable for every M € /L . O

1.3.  Basic processes and mappings

For any fixed s ¢ &, we define the Dirac measure 0s € N by 6,B = 1p(s), B e AB. The
mapping s — § is clearly measurable (&, &) - (R, &), and in particular 6, is a point
Process on & for any random element 7 in (&, ). Writing w = Pz-1, it is seen that 8,
has intensity E§, = Pr~1 = @ and L-transform )

Ee'"=Ee /™ =we-/, fedF. ' (1.1)

ST
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Next suppose that n € Z,, and let 7y, ... , 7, be independent random elements in ©
with common distribution w. We shall say that a point process & on & is a sample
process with intensity nw, if & has the same distribution as d;, + ... 4+ &;,. By (1.1)
and the assumed independence, & has then the L-transform

E exp (—‘%6“/‘) = 'ﬁ1E exp (— 6,f) = (we ™), feF. (1.2)
j= i=

By Lemma 1.7, we may consider. n = » as a Z,-valued random variable and mix
w.r.t. its distribution to obtain a mized sample process with intensity (Ev)w and L-
transform

Ee ¥ =Ewe™) =yplwe™), [eF. (1.3)
Here y denotes the (probability) generating function of v, i.e.
w(s) =Es, s€e[0,1].
In the particular case when v is Poisson with mean a = 0, p is given by

o] ans" e
1/)(3):9_“27:6“( 9, .sef0,1],
n=0

and (1.3) becomes, with A = aw,
Ee ¥ —e-al-wed) — g M1-¢!)  fe F, (L4)

where we have used the fact that w©& = 1. A point process with this distribution is called
a Poisson process with intensity A. In this case A is bounded, but we may also construct
Poisson processes with unbounded intensity A € IR. For this purpose, let Sy, Sy, ... € Z
be any disjoint partition of © into bounded sets, (cf. 15.6.1 for existence). Since the
corresponding restrictions S;2, j € N, of A are bounded, there exist some independent
Poisson processes &, &, ... on © with these measures as intensities. Moreover,

YE{B=Y (SAB=AB< , Bed,
) j

so the series Y & converges by Lemma 1.6 to some point process & on &. Applying
(1.4) to each &; and using the assumed independence, we obtain for any f e F

Eo~¥ = Ec~# = [Texp {—(54) (I — o))
i J
= exp {_ Z (Sjl) (1 —_ e’“f)} — e—l(l—e‘/) ,
j

80 (1.4) remains true. (The formal calculations here and in similar places are justified
sy the fact that all quantities involved are non-negative.) Any point process & with
b-transform e~*1—¢7) will henceforth be called a Poisson process with intensity A.
Ls will be seen from Theorem 3.1, its distribution P&~ is uniquely determined by A.

If £ is a Poisson process on & with intensity A and if By, ..., By € & are disjoint,
we get for any #;, ..., f, € Ry

Lep,, ... eniltys oon s b) = Ls(? tjlp;) = exp {—A [l — exp (— ZJ: tilp,)]}
= exp {—A ]Z 15, (1 —e~ b))} = [}I exp { —Alp(l — e~b)}
= IJI Le(t;15) = I;I Leg,(ty) -
By 15.5.1, this shows that & has independent increments, in the sense that £B,, ..., EBy

are independent for any k¢ N and disjoint By, ..., By € . This fact was actually
the basis for the above construction of Poisson processes with unbounded intensity.
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Let us next consider a Poisson process &, with intensity «A, where x € R, while
2 € M. By (1.4) and Lemma 1.7, we may consider « as an R, -valued random variable
and mix w.r.t. its distribution, thus obtaining a mized Poisson process, possessing the
L-transform

Ee—*i1-¢N) = L,(A1 —e~)), fed. (L.5)

More generally, it is seen from (1.4) and Lemmas 1.3 and 1.7 that the intensity A = 7
of a Poisson process may be considered as a random measure on ©. In this way we
obtain by mixing a Cox process & directed by n, possessing the L-transform

Li(fy =Ee-ni-¢N =L (1 —e¥), feTF. (1.6)

Table 1. Some basic point processes and random measures.

process & based on E P{§B = 0} Le(f)

sample w,n nwlw® (0B lw@)" (e To&)"
mixed

sample , v(p) Ev) wlo®  plwBod) p(w e w®)
Poisson A A e—*B e~M1—e)
mixed

Poisson 4, « (Ex) A L,(AB) La(A(1 — e77))
Cox n En Ee—7B Ly(1 — e™)
compound 7, B (EB) En E(P{B = 0})"2  Ly(—log Lgo f)
thinning 7, p pEn E(1 — p)n® L,(—log [1 — p(1 —e™)])
rando-

mization 7, 4 En X A L,(—logAB®)  L,(—logie™)

Let us now introduce compound point processes as follows. As will be seen in
Lemma 2.1 below, there exists for every fixed p € f some finite or infinite sequence
tyy by, ... € © such that uy = ¥ ;. Assuming B, By, fo, ... to be independent and iden-
tically distributed R,-valued random variables, it follows by Lemma 1.6 that
& = X B0, is a random measure on &, and by the assumed independence, its L-
transform becomes for f € & (writing o for composition)

Eexp (— 4:3 Bifty) = l;I E exp (—B/(t) = I;I Lg o f(t)
= exp X log Ly o f(t;) = exp (ulog Lgo /).
J

According to Lemmas 1.3 and 1.7, we may mix here w.r.t. u =17 regarded as a
point process on &, and in this way we obtain a f-compound of 7, possessing the
L-transform

Eexp (nlog Lgo f) = L,(—log Lgo f), fe. (1.7)

In the particular case when § equals either 0 or 1, these values being attained with’

probabilities and 1 — p and p respectively, we get a p-thinning of 1, and the L-trans-
form in (1.7) reduces to )

Ly(—log[pe~ + (L — p)l) = Ly(—log [L — p(1 —e~)]), feF. (L8)
Intuitively, a p-thinning of 7 is obtained by deleting the unit atoms of 77 independently
with probability 1 — p each. (Here and in similar cases, the phrase “unit atoms” is
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intended to mean that an atom of size » > 1 should be regarded as the sum of 7
atoms of size 1.)

Starting from a fixed measure u = X 8, as above, we next consider the point
process & = ¥ 8y, 05 on & X R, where gy, 0, ... are independent random variables
with common distribution A. Letting f € F(& X R) be arbitrary, we obtain

Eexp (— JZ iy, o)) = gl E exp (—f(tj 07)) = I;IA exp (—f(t:, *))
—=exp X, logAexp (—/(t,)) = exp ulogie~.
In this case, mixing w.r.t. u =7 yiel;s a A-randomization & of n with L-transform
Lg(f) = L,(—logAe ). (1.9)

In particular, & is said to be a uniform randomization of 7, when A equals Lebesgue
measure on [0, 1].

We finally point out that the above method of constructing the basic point pro-
cesses does not depend on the special assumptions on & made above. In particular,
Poisson processes with arbitrary o-finite intensities may be constructed in any mea-
surable space. This possibility will be useful in Chapter 6.

1.4. Exercises

1.1. Let J = @ be a semiring satisfying 6(J) = &. Show that Lemma 1.7 remains true
with F, replaced by the class of all simple functions over J, i.e. of all functions of the
k
form ¥ t; 1, with arbitrary k€ IV, &y, ... , i € By and Iy, ..., I,ed.
j=1
1.2. Show that, if & is a Cox process directed by 7, then & and 7 have simultaneogsly

independent increments. Prove the corresponding fact for f-compounds with g =+0.
(Hint: Use 15.5.1.)

1.3. Let & be a random measure on & andlet J = & be a semiring satisfying
G(J) = B. Show that & has independent increments iff &I, ..., &I, are independent
for any ke N and disjoint I, ..., Iy € J. (Cf. MATTHES et al. (1978), p. 16. Hini:
Extend the independence property, first to the ring generated by J, and then by
means of 15.2.2 to &, considering one component at a time.)

1.4. Verify the expressions for E§ and P{¢B = 0} given in Table 1. (Hint: Make use
of mixing or apply the formulae '
3 d :
EEB = — d—f LEB(t) 5 P{EB = 0} = lim LsB(t) ; B= <§9.)
t=0 troo
1.5. Let £ be a random measure on & and let % — 7 be a ring satisfying 6(%) = 5.
Show that there exists for every B¢ B some sequence Uy, U,, ... € % such that

£U, . EB. (Hint: Use 15.2.2. Cf. MaTTHES et al. (1978), p. 29.) Extend this result

to several dimensions: For every k € IV and disjoint By, ..., By € B there exists some
sequence (Upg, o, Un)€ U*, ne N, such that Uy, ..., Un are disjoint for each
n € IV and moreover (§U,1, ... , EUnr) B (EBy, ..., £By).

1.6. For fixed p¢€ (0, 1), let & be a p-thinning of some point process 7 on €.
Consider a fixed B € . Prove that E(p™' — 1)88 < oo iff E(2(1 — p))7? < o, and

2 Kallenberg, Measures
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that in this case P{nB = 0} = E(1 — p~1)!%. Note that the two equivalent conditions
are automatically fulfilled when p = 1/2. (Hint: Consider the generating function of
£B as a Taylor series around 1 — p and determine its radius of convergence.)

1.7. Consider the space of all g-finite measures on &, and form a space M by iden-
tifying measures p; and u, with go;f = pof, f € Fo. Let U’ be the o-algebrain M generated
by the mappings p — uf, f € F¢. Show that I < I and M = M. Prove Lemma 1.7
for random elements in (I, ')

1.8. Let J = B be a DC-semiring and write 3, for the space of o-finite measures
on & where y; and u, are identified whenever u,I = ppI, I € J. Let o/l; be the o-
algebra generated by all mappings y — ul, I € J. Show that It = My and M < M,
and further that the mapping u — pf is unique and measurable for every f¢ Fo.
Prove a version of Lemma 1.7 for random elements in (g, #y).

1.9. Let the space & and & be lescH, and let f: @ -~ & be such that
FYBE&)) = B(©). Show that p — uf™* then defines a measurable mapping from
M(S) to M(E'). Thus & is a random measure (point process) on & whenever the
corresponding thing is true for & on &. Prove also that

Le(g) = Lelgo ), ge F(@).
1.10. Say that £ = & is a separating class if, for every pair F, G'¢ B with F' = G

and such that F is closed while & is open, there exists some C € € with I’ = C < G.
Show that every DC-ring is separating.

1.11. Show how (1.8) may be deduced from (1.9).

2.  Sample realizations

2.1. Decompositions

Let M, denote the class of all diffuse (or non-atomic) measures in I, and define

Lemma 2.1. Bvery measure € I may be written tn the form

k
W= ua + 'Elbﬁ“ (2.1)
i=

for some pa € Ma, k€ Z,. U {0}, by, by, ... € B and ty, by, ... € &, and this decomposition
is unique apart from the order of terms, provided the t; are assumed to be distinct. In this
case, p€ N iff pa = 0 and by, by, ... € IN.

Proof. Since y is o-finite, it can have at most countably many atoms of size greater
than some fixed @ > 0, and hence the total number of atoms is at most countable.
Choose an arbitrary enumeration b;8, by0,, ... , and verify that pus = p — X b0y, is

a non-atomic measure. The uniqueness assertion follows by an obvious identi]fication
procedure.

Now suppose that u€ 0. Since the one-point sets of & clearly belong to &, it
follows immediately that by, by, ... € IV, and hence that p, € . To see that this implies
pa = 0, note that every point s€¢ & has a neighbourhood G,¢ B satisfying
paGs = pa{s} = 0. Now every compact set may be covered by finitely many sets G,
and we get ugB = 0, B e A, as desired. O

Given any p € M and « € (0, o], we define the measures pg € N and p, € M by
B = X L, p(ufs}), BeR,’
seB

HaB = pB — 5 #{s} Lo, co)(pi{s}), Bed.
8

Note that u is obtained by counting each p-atom of size = a once, while , is ob-

- tained from p by subtracting all such atoms. When ¢ %, we shall write uf = u*

and say that g is simple if uf = 0, i.e. if all atoms of p have unit size.

We further introduce the notion of null-array oy partitions of some fixed set B € 7.
By this we mean an array {B,;} of J-sets, such that for fixed n ¢ IV the By; form a
finite disjoint partition of B and such that max; |B,;| — 0, where |-| denotes the
diameter in any fixed metric . (Arguing as in Lemma 1.1, it is seen that the last
condition is independent of the choice of p.) Let us further say that the partitions
{B,;} = & of © form a null-array, if for every fixed C ¢ & and n € N, only finitely
many sets B,; intersect C, and their diameters tend uniformly to zero as n — co.

The next lemma is basic.

DEd
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Lemma 2.2, Let {By;} = B be a null-array of partitions of some fiwed set B e .
Then
lim 2 1, o) (uBn) = paB, peM, acR. (2.2)
n—>oo j
Proof. Since max; |By| — 0, all y-atoms in B of size = a will ultimately lie in
different partitioning sets, and so we get for large n ¢ IV

2 Y o) Bag) = B . 2.3)

Now suppose that the inequality in (2.3) is strict for infinitely many n € IV, say for
n € N’ = N. Then there exist some indices j,, n € N’, such that

paBnjn=a, mnel. (2.4)

Choosing arbitrary s, € B, ;,, n € N, it is seen from the compactness of B~ that there
exists some subsequence N’ — N’ such that s, — some s€ B~ (n€ N''), and since
| By, jul = 0, it follows from (2.4) that u,& = a for every open set G ¢ B containing s.
But then p,{s} = «, which contradicts the definition of u,. This shows that the inequa-
lity in (2.3) can be strict for at most finitely many n € IV, and hence completes the
proof. O

We may now extend the decomposition (2.1) to random measures.

Lemma 2.3. The decomposition (2.1) may be chosen such that pia, k, by, by, ... and t, ty, ...
are measurable functions of u.

Proof. Let ' = 9 (&) be the set of all measures u € N with u3 = 0, and conclude
from Lemma 2.2 that N € . Our first aim is to prove the assertion for 9¢'. For this
purpose, choose a metric ¢ and a dense sequence sy, 8,, .. in &, and note that o(s, s») =
= o(t, s,) for all n € IV iff s = ¢. (In fact, assuming this condition to be true, we have
eithers = s, for some n, and then o(t, s,) = 0(s, $n) = 0, which means that { = s, = s;
or else there exists some sequence N’ < IV such that s, > s (n € N’), and then
o(¢, sn) = (s, $u) — 0, proving that s, — ¢, and again we may conclude that s =t¢.)
Because of this fact, we may define a linear order in & by writing s < ¢ whenever,
for some ke IV,

Q(‘?’ 'SI) :Q(tr 87)7 j= 1, "'7k — 1; Q(S: 8k)<QUJ 8;,;).
Let us further introduce a disjoint partition By, B,, ... € B of &. Since uB, < co for
each n € IV, we may order the atoms ¢, &y, ... of u, first according to their occurrance in
By, B,, ..., and then, within each B,, w.r.t. their linear order. To show that the ¢;,
when ordered in this way, are measurable functions of y, it is seen by induction that
it suffices to consider #;, i.e. to prove that {u: ¢, € B} belongs to ~/" for each B¢ 7,
and this follows from the fact that
k-1
{wite By = U (N N {n:u(Ba 0 S) £13)
ke N j=1 reQ.
n( U@ {w:u(B n By n Si(r)) = w(By 0 Si(r) = 1)1,
reds+
where S,(r) = {s€ &:p(s, s;) < r} while Q, denotes the set of rational numbers in
s .
Let us now consider the case of general ue I, and define the set function
& = E(u) by
E(B X [a, oo)) =usB, BeR, ackl. (2.5)
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By the Caratheodory extension theorem, &(u) extends to a measure in N (S x R,),
and it follows by the first part of the proof that & may be written in the form

k
f(‘U,) — 2‘1 5(t,', bjy) » (2‘6)
j=
where k and the pairs (f;, b;) are measurable functions of £. But from Lemmas 1.3 and
2.2 it is seen that &(u) is a measurable function of y, and hence so are k, bis bayoee an.d
t1, ty, ... Moreover, it is easily seen from (2.5) and (2.6) that (2.1) is valid with this
choice of parameters. Finally, the measurability of ug follows from (2.1) by Lemmas
1.3 and 1.5.

Tt should be noticed that the measurable decomposition in Lemma 2.3 is by no
means unique, not even apart from the order of terms (cf. Exercise 2.7). However,
when considering random measures & on & with £& < co a.s. (which holds automati-
cally when  is compact), it is sometimes natural to require the atom sizes By, Bay -
to be taken in order of decreasing magnitude and, whenever two or more 3 coincide,
to order the corresponding atom positions 7; at random. (We shall always assume our
basic probability space to be rich enough to support any randomization we need.)
Though this procedure does not lead to a unique decomposition

E = ‘Ed + Z ﬂ!aq 3’ . (2'7)
j=1

it does lead to a unique joint distribution of the random elements &4, ¥, f1, B, .- and
7, T, - A decomposition (2.7) with the above properties will be needed in Chapter 9.

2.2, Intensities and regularity

Theorem 2.4. Let & be a random measure on &, and let a € R, and B € B be such that
E£,B < 0. Further suppose that { By} = & 1is a null-array of partitions of B. Then
lim ¥ P{a < &B,; < b} =E(¢ —&)B, be(a 0]. (2.8)
n->oo j
Proof. Put for brevity &f — &F = & ;). Taking differences in Lemma 2.2, it is
seen that

lim E l[u,b)(Ean) = E'[X;” b)B 3 (29)

n—>oco j
and hence by Fatou’s lemma
EEE‘;’ b)B § lilll lnf E Z ]-[a, b)(Ean) = lim lnf Z P{a é Ean < b} 5

7—>00 ] n—>00 j

which proves (2.8) in the case when E&E 5B = co. Thus it remains to consider thg case
when E&, B and E&f;, 1) B are both finite. But then (2.8) follows from (2.9) by dominated
convergence, since

{a = 'San <b} = {‘E?;, b)an =1 v {S;Bﬂ]’ =a},
and therefore
Y L 0yEBr) = T L, o0y 5y Bg) V 1ia, c0)(EaBus)
j Jj
é Z 1[1, oo)(EP;, b)an) + Z 1[a, OO)(SL’Ian)
4 J

< T & nBri + X a7 By = & B + aB. O
Jj 9
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Given any covering class J = & and any a > 0, we shall say that & is a-regular w.r.t.

J, if for every fixed I € J there exists some array {I,;} < J of finite covers of I (one
for each n € IV) such that

lim ¥ P{&l,;=a} =0 . (2.10)
n—>co j
Theorem 2.5. Let & be o random measure on &, let I = B be a covering class and let

a > 0. Then & = 0 a.s. provided & is a-regular w.r.t. J. The converse is also true if
E& € MM and T vs a DC-semiring.

Proof. Let I € J be fixed and let {I,;} < J be an array of finite covers of I satis-
fying (2.10). Then

PEEI >0 <P U {Ely 2 a} < T P{EL,;=a) >0,
i i

which yields &1 = 0 a.s. Thus the first assertion follows from the fact that J is
covering. Conversely, suppose that &F = 0 a.s. and E£ ¢ 9, and let J be a DC-
semiring. Choose for any fixed I ¢ J some null-array {I,;} — J of partitions of I,
and conclude from Theorem 2.4 that

lim ¥ P{El,;=a) =EE&X] =0.

n—+>oo j

Since I was arbitrary, this proves the asserted regularity of &. O

It is sometimes useful to replac¢e the global regularity condition (2.10) by a local
one. For a first step, note that if J is a DC-semiring and if A € I, then (2.10) holds if
P{éI = a} = o(AI) as |I| — O, uniformly for all 7€ J contained in an arbitrary
compact set, or equivalently, if

e—>0

limsup{%P{EIga}:leﬂnIo,II]<s}=0, Iyed, (2.11)

so in this case & = 0 a.s. (Here and below, 0/0 is to be interpreted as 0.) We shall
show that the same conclusion may be drawn even without the uniformity require-

ment. Let us say that a sequence of partitions is nested if it proceeds by successive
refinements.

Theorem 2.6. Let & be a random measure on & and let a > 0. Then &f =0 a.s.,
provided there exist some DC-semiring J = B and some A € I satisfying

&0

limsup{%P{EIga}: Ied,|I|<e, se I‘}: 0, 8€6. (2.12)

Proof. Let J and A be such as stated, and suppose that P{&¥ ==0} > 0. Since
J is a covering class, we may then choose some set I € J such that P{£FI > 0} > 0.
Letting {I,;} = J be a null-array of nested partitions of I, we obtain

P{&TT >0} =P U {&1y; >0} = T P{&7T1; > 0}, (2.13)
j i
and we shall prove that this implies

1 1 ‘
max mp{fﬁu >0} =4 P{EFI >0} . (2.14)

J

In fact, (2.14) follows trivially from (2.13) if A = 0, while if AZ >> 0, insertion of the
converse of (2.14) into (2.13) would yield the contradiction

PEIT > 0} < ;- P(EIT > 0) £ ALy = P(EH >0} .
J
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From (2.14) it is seen that there exists some 7, € {1}y, Iy,, ...} satisfying
1 - 1 &
— e Wil 7 ,
AIIP{éaIl >O}=),I P(Ea >0}

and proceeding inductively, we may construct a non-increasing sequence I, I, ... € J
with |I,| — 0, such that

1. 1 - 1 ¥ :

— P{& == I>0 0, eN. (2.15
AInP{SI’nga'} g;ﬂ.I” P{Eal'n>0} =77 P{‘Ea > } > n ( )
Since {I;} has a non-empty intersection {s}, (2.15) shows that (2.12) is violated
at s. g

Criteria for a.s. diffuseness of random measures are obtained from Theorems 2.5

. and 2.6 by letting @ > 0 be arbitrary. Thus § is a.s. diffuse if £ is a-regular w.r.t. some

covering class J = & for every a > 0. In this case we shall say that & is regular
w.r.t. J. Note also that simplicity criteria for point processes may be obtained by
taking @ = 2 in Theorems 2.5 and 2.6. Finally observe that, for point processes, (2.8)
is generally true with @ = 1, since in this case &; = 0 a.s.

We conclude this section with a different kind of simplicity criterion which will play
an important role in the sequel.

Lemma 2.7. Let & be a point process on & and let I = B be o DC-semiring. Then
& 18 a.s. simple iff

P{EI > 1) < PEXI>1), Icd. (2.16)
Proof. Suppose that (2.16) holds, and conclude that '
O<PEI<ET =1} =P{EI>1} —PE* >1} <0, Ied. (217)

Letting 7 € J be fixed and choosing a null-array {I,;} = J of partitions of I, we
obtain from (2.17) and Lemma 2.2

PLEL > E¥I} = P U (ELy > £,
J
<P U {ELy> 8y =1} + P U {851y > 1)
i j
=P U {E*In_1> 1} = P{max E* Inj> 1} - 0,
Jj J

which proves that (£ — &%) I = 0 a.s. Since J is covering, this yields § — £* =0
a.s., and so £ is a.s. simple. The converse assertion is obvious. O

2.3. Absolute continuity

For p > 1, let ||-||, denote the norm in L,(2, A, P), i.e. ||n]|. = (E|n|?)/?. By Minkows-
ki’s inequality, the set function ||£B||,, B¢ B, is subadditive for every random
measure £. Given a null-array J = {I,,;} < & of nested partitions of €, we may hence
define the set function

[1€llpI = lim ;H&Injnp, Ted; (2.18)
n—->oo

where the summation extends by convention over all j with I,; = Jis

Theorem 2.8. Fiz p > 1 and a null-array J = {I,;} = B of nested p_artitifms ?f %{
and let & be a random measure on & withyp = E& € M. Then £ L u a.s. with a density
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satisfying || X||p u € M iff ||&]|I < oo for all I € J. In this case,
Ellp = 1 Xpllp = [1X]Ipu -

Proof. Let ¢ > 1 be such that p=! 4 ¢~! = 1. When there is no risk for confusion,
we shall write ||-|| in place of [|-||,. For every n, we denote by In(s) the set I,; con-
taining s and write Xn(s) = §I.(s)/uln(s).

Let us first suppose that § = Xu. By Fubini’s theorem and Hélder’s inequality,
we get

[|uX|15 = E(uX)? = E(uX) (uX)? 1 = Ep(X (uX)?~1) = pE(X(uX)?-?)
= pllI X (X)) = (u [1X]lp) [|uX]52.

If 0<|luX]||, < oo, we may divide by the second factor on the right to obtain
[luX|| = w||X]|. This extends by monotone convergence to the case of infinite ||uX]||,
and for [|uX|| = 0 our inequality reduces to a triviality. Replacing X by X - 15 for
B e R yields ||EB|| =< (/|X]|| ) B, and it follows by (2.18) that ||&]| I < (||X|| p) I,
Ied.

To prove the converse inequality, note that, for every fixed w, X, is a martingale
on (&, u) with a.e. limit X, and conclude by Fubini’s theorem that X, - X a.e. u X P
(cf. 15.8.3). Applying Fatou’s lemma twice and using (2.18), we hence obtain for
Ied

(11X ) I =If||X|| du glflim inf || X,|| dp
n—>o00

< liminf [ || Xl dp = lim T ||EL]] = (18] I .
n-+oo I n->oco j
Thus [|§]| I = (||X|| #) I holds for all I € J, which means that the set function ||&||

extends (uniquely) to the measure ||X||u on &. Note in particular that ||§|| I < oo
for all I € J whenever || X||u€ .

It remains to prove that & is absolutely continuous whenever the limits in (2.18)
are finite. Under this condition, Hélder’s inequality yields for any I € J

: ET \1/g EL,:\)1/2
E[ (Xp)t+iedy = ¥ EEL, ""f) < F {E 7)}
[ e = g eina ()" g er {27
= Z 8Ll < 181 I < 0. (2.19)
J

Now {X,} is again a martingale on (&, u) for every fixed w, so {(X,)1+V} is a sub-
martingale, and it follows in particular that the integral f (Xp)t+Ye dp is non-
1

decreasing in n for every fixed w. We then obtain from (2.19) by monotone conver-
gence

E supf (Xp)tt+ledu < oo,
n I

80 the inner integral must be a.s. bounded. Thus the martingale {X,} is in fact a.s.
uniformly integrable, and in particular it converges in L;(I, u) for every I € J (cf.
15.8.2). Writing X for the limit (which is clearly independent of I), we get a.s.

[Xdp=1lim [X,du= &L, =8, IeJ.
f i

n->oo I

Thus the measures & and Xy coincide a.s. on J, and so they must agree on & also. [
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2.1. The measurability of the mapping p — g as well as of u — pg and p— Uas
a > 0, follows from Lemma 2.3. Give a direct proof based on Lemma 2.2.

2.2. Prove that the events {u ¢ M: p is diffuse} and {p e N: p is simple} are mea-
surable. (Hint: Consider the measures jp — pq and yu — p*, respectively.)

2.3. Prove that the notion of null-array of partitions as well as the conditions (2.11)
and (2.12) are independent of the choice of metric g.

2.4. Show that, if & is a Cox process directed by 7, then £ is a.s. simple iff 7 is a.s.
diffuse, (cf. e.g. MaTTHES et al. (1978), p. 291). Show a,lso_ that, if E_ls for some p > 0
a p-thinning of 7, then & and 7 are simultaneously a.s. simple. (Hint: Consider first
the case of non-random 7.)

9.5. Show that Lemma 2.7 follows directly from Theorem 2.4 in the particular case
when E&; € M. (Hint: Apply (2.8) with @ = 2 and b = oo to _both & and &*.)

2.6. Let & be a random measure on &, let J = & be a DC-semiring and let a > 0.
Prove that £f = 0 a.s. iff P{E] = a} < P{&,] < a}, [ € J. (Hint: Proceed as in the
proof of Lemma 2.7.)

2.7. Show by an example that the decomposition in (2.7) is not unique in general,
even apart from the order of terms. (Hint: We may e.g. take © = {1,2}, v =2,
Bi=1, f=2, and let P{r, =1, 1,=2} =P{5, =2, 5, =1} = 1/2. A second
decomposition is obtained if we replace 7; and 7, by 7, AT, and 7, V Tp).

9.8. Show that Theorem 2.4 and the converse part of Theorem 2.5 may be false
when E&, = oo or E§ = oo respectively. (Cf. DALY (1974) or MATTHES et al. (}978),
p- 371. Hint: Consider (2.8) with @ = 2 and b = oo, and let & be a su1ta.b'le mu.(ture
of the non-random measures y, € R(R), n € IV, where y, has unit atoms at j27", j € Z.
Further define B,; = ((j — 1) 2%, j27"].)

2.9. Prove the following stochastic version of Lemma 2.2: Let £ be a rdndom mea-
sure on & and let J — & be a semiring satisfying 3(J) = 8. Then there exists for
every I € J some array {I,;} < J of finite disjoint partitions of I such that

E 1[a, oc)(‘f[nj) 'i’ E:I as 7.~ 100 , a > 0.
J

(Hint: For fixed a > 0, let {B,;} = & be a null-array of parti@ions_of I and apply
TLemma 2.2 to the random measure (&, £,) on the space 2I (two identical copies of I).
Then use on 27 the result of Exercise 1.5 to obtain two approximating partitions
{U,;} and {U,;} into finite unions of J-sets. Let {13} = <7 be a common refinement.
In case of k points ay, ..., @ € B, choose a common refinement {1y = J c_)f th’e
corresponding sequences. Finally suppose that a;, a,, ... is a dense sequence in R i
containing all fixed jumps of the process £*I, > 0, and choose for {I,;} the dia-

gonal” sequence in {/(%)}.
9.10. Use the result of Exercise 2.9 to extend Theorems 2.4 and 2.5, Lemma 2.7
and Exercise 2.6 to the case of semirings J < B satisfying 6(J) = &B. (For a direct

argument in the point process case, cf. MarTuEs et al. (1978), p. 34.)

2.11. Prove that Lemma 2.1 remains true for arbitrary o-finite measures p on 6,
while Lemma 2.2 remains true with @ = 1 for the subclass of Z,-valued o-finite
measures.
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2.12. Let § be a random measure on &, bet J denote the class of all open or all
closed JB-sets, and let @ > 0 and A € IN. Show that & = 0 a.s. if (2.12) holds with I
replaced by I-. (Hint: In the case of closed sets, note that B; = {B € #: 9B = 0}
is a'DC-ring (cf. Lemma 4.3 below), and apply Theorem 2.6 to this class. As for the
open set case, approximate each B ¢ &, by open %-sets G o B, cf. 15.6.1.)

2.13. Show that Lemma 2.7 remains true if the family {I° I € J} constitutes a
base for the topology. (Hint: Fix a compact set ' and a finite cover by J-sets of
diameter < e.)

2.14. Show that the mapping (u, s) - u{s} is measurable from MM X & to R,.
Thus &{s} is a measurable random process on & whenever ¢ is a random measure.
(Hint: Approximate by Z ulyily,,, where {I,;} is a null-array of partitions of ©.)

i J
2.15. Let p, {1}, u, £ and X be such as in Theorem 2.8. Prove that
IELu(@)llp/ulals) = |IXIl,  awe. (@) and in Ly(u) .

(Hwnt: The expression on the left is a submartingale bounded by the martingale
[18l1p Ln(s)/ul,(s), hence uniformly integrable with limit / < || X]|,, a.e. and in L, (cf.
15.8.1-3). Moreover, its integral converges to that of || X||, by (2.18), so f = ||X]|,
a.e.)

2.16. Fix p > 1, and let & be a p-th order point process on &. ie. such that
E(B)? < o0, B e A. Let &7 be obtained from £ by changing every atom size f to pr.
Prove that, for every null-array {I,;} — & of nested partitions of &,

E(51,(5))”
"7 51 a.e. Er.
EFLE 0 T
(H7nt: Check that the left-hand side is an L;-bounded supermartingale = 1, and that
its integral tends to that of 1. Then apply Fatou’s lemma.)

2.17. Let & be a first order point process on &, and let {I,;} = & be a null-array of
nested partitions of ©. Prove that

E[EIn(S); ‘S*In(s) = 1]
EEL,(s)

(Hvnt: Check that the left-hand side is a submartingale bounded by 1, hence uniformly
integrable, and that its integral tends to that of 1.)

-1 a.e. EE.

3. Uniqueness

3.1. The general case

Write =& for equality in distribution, i.e. § L yiff P& = Pyl
Theorem 3.1. Let & and 1 be random measures on &, and let I = B be a semiring
satisfying 6(J) = B. Then the following four statements are equivalent
() & L9,
(ii) &f L nf, fe€Fun (i) Le(f) = Ly(f) feFe
(i) (ELy, o, EL) L (9L oo s I), keN, I,..,Ized.

Note in particular that the L-transforms which were calculated in Chapter 1
determine the corresponding distributions uniquely.

Proof. It is obvious that (i) implies (ii), (i)’ and (iii). Suppose conversely that (iid)
holds, and define
={MeM:P{lec M} = P{ne M}}.

Then 9 is clearly closed under proper differences and monotone limits, and it contains
I Furthermore, it is seen from (iii) that 2 contains the class & of all sets of the form

(peMephi<ty, .., pli<t}, keN, I,.,IyeJd, b, tebB,.

Since & is closed under finite intersections, we may conclude from 15.2.1 that 2 o G(Z’ )
But o(£) = M by Lemma 1.4, and so P{é € M} = P{ne M} forall M € A, i.e. £=X 7.
Let us next assume that (ii)’ holds. Then

Leg,, ...enltys oo te) = Le(Z tfy) = Ly(Z tfy) = Lug,,..,npulbys v » te)
J J

forevery k€ N, fy, ..., f,c € Foand ty, ..., i € By, so it follows by 15.5.1 that

i oo s Ef) X fis e s fe) s KEN,  fiyeeesfr€ Fon
We may now proceed as in the first part of the proof to conclude that (i) holds. Since
(i) trivially implies (ii)’, this completes the proof. O
Corollary 3.2. Let & be a Cox process directed by some random measure 1 on ©. Then
the dustributions of & and m determine each other uniquely. This vs also true when Eisap-

compound of some point process m, provided PB1 is known and such that :i: 0.
Proof. If £ is a Cox process directed by 7, we have by Table 1
Le(f) = Ly(1 —e), fed. 3.1)

Writing 1 — e~/ =tg, we may solve for f provided 0 < ig <1, thus obtaining
f = —log (1 — tg). Hence by (3.1)

Lyy(t) = Ly(tg) = Le(—log (1 —tg)), 0=tllgll™, g¢eFe,
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where ||g|| = sup, g(t), and so it is seen from 15.5.1 that P! determines P(ng)~* for
all g € F,. But by Theorem 3.1, the latter distributions determine Py~
In case of B-compounds, we get in place of (3.1)

L¢(f) = Ly(—log Lgo f), fe . (3.2)
where the ring stands for composition of functions. Putting —log Lo f = tg and
noting that L, has a unique inverse Lj' on the interval (P{8 = 0}, 1], it is seen that
we may solve for f provided 0 < tg <. —log P{8 = 0}, thus obtaining f = Lz'oe~%.
Hence by (3.2)

Lyg(t) = Le(Lg 0 e7), 0=t —llgl ™ log P{B =0}, geTe,
and since P{f = 0} <1, the proof may be completed as before. O

3.2. Simplicity and diffuseness

Theorem 3.1 may be partially strengthened as follows.

Theorem 3.3. Let & and 1 be point processes on ©, and suppose that & vs a.s. simple.
Further suppose that U = B is a DC-ring while I = B 1s a DC-semiring. Then & <% n*
iff

P{U =0} =P{(nU=0}, Uecl. : (3.3)
Furthermore, & <= n iff (3.3) holds and in addition
PEI>1) =P{nI>1), Ied. (3.4)

Proof. The necessity assertions are obvious. Suppose conversely that (3.3) holds,
and define

D={MecN:P{Ec M} =P{ne M}}.

Then 2 contains N and is closed under proper differences and monotone limits.
Furthermore, it follows from (3.3) that 2 contains the class

E={ueN:pU =0}, Ucl}.

Now £ is closed under finite intersections, since % is closed under finite unions and
moreover

{pU, =0} n{uU, =0} = {u(U, uU,) =0}, Uy, Uy,el,

so it follows by 15.2.1 that D = ¢(£). Using Lemma 2.2, it is further seen that the
mapping p — p*I is ¢(6)-measurable for every I € J, and by Lemmas 1.3 and 1.4
this proves that the mapping ¢: u — p* is measurable o(€) — /. Using the fact that
D o o(8), we thus obtain

P{l*e M} =P{lecp M} =P{necp M} =P{n*e M}, Med,
which proves that &* =% »*, and hence also that & =& n*.
If (3.4) holds in addition, then
Pin*I > 1} =PI > 1}y =Pyl >1}, Ied,
and if follows by Lemma 2.7 that 7 is a.s. simple. Hence § -L 7 in this case. O

Theorem 3.4. Let & and 1 be point processes (or random measures) on &, and suppose
that & 1s a.s. simple (or diffuse respectively). Further suppose that U6 = & 1is a DC-ring
while € < B is a covering class, and that s, t € R are fived with 0 < s < t. Then & <y
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iff n a.s. is simple (diffuse) and

Ee¥U=Ee 0, Ucl, (3.5)
and also iff (3.5) holds and in addition
Ee-#%C < Ee—®¢, C(cé. (3.6)
If EE ¢ M, then (3.6) may be replaced by the condition
EEC=EnC, Cecb.’ (3.7)
It is interesting to observe that (3.3) is formally obtained from (3.5) by letting
y = o

Proof. Let us first consider the point process case, and let &, and 7, be p-thinnings
of & and 7 respectively. By Table 1,

Le(f) = Lg (—log[L —p (L —e™N)]),  fed,
and putting f = 1p, we get in particular
Ee-%rB — Eexp {EBlog[l—p(l —e %]}, BeRB, wuek . (338
As u — o0, we obtain by dominated convergence
P{£,B =0} = Eexp {{Blog (1 —p)}, BeA. (3.9)

Choosing p such that log (1 —p) = —t,ie.p=1 —e~t, it follows from (3.5), (3.9)
and the corresponding relation for 7 and 7, that

P{5,U =0} =Ee#V =Ee~"0 =P(n,U =0}, Uec¥,

so Theorem 3.3 yields & <= 7% Now & and &, are simultaneously a.s. simple, and
correspondingly for 1 and 7, (cf. Exercise 2.4), so weget &, L ¥ in gen?lral, and if
7 is a.s. simple, even &, —L y,. In the latter case, Corollary 3.2 yields & =1, which
proves the first assertion.

In proving the second assertion, we may assume that &, L n} and that (3.6) holds.
Since 0 < s < t, there exists some u > 0 satisfying

l—e?*=(1—eH)(l—e¥=pl—e"),
or equivalently
log[l —p(l—e " *)]= —s.

Inserting this « into (3.8) and the corresponding relation for 7, and using (3.6), we
obtain for any C € €

* N st I . ,
E c—un,,C = E e—u:pC s E e—s,C é E e snC — E e wypC s

SO
E{e—un;(l _ e—“’lpc} é 0 Cekt.

But here the random variable within brackets is non-negative, so it must in fact be
a.s. zero, and we obtain 75C' = 1, C a.s., C'c 6. Thus it follows as in the proof of Lemma
2.7 that 7, is a.s. simple, and the proof may be completed as before. The last assertion
follows by a similar argument based on the relations E&, = pE¢ and En, = pEn
(cf. Table 1).

The random measure case may be proved from Theorem 3.3 by a similar argument,
where instead of thinnings we consider Cox processes directed by & and 2. Alter-
natively, we may fix an arbitrary « > ¢ and apply the point process case of the pre-
sent theorem to Cox processes directed by ué and wun. The details are left to the
reader. O
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3.3. Compound point processes

Theorem 3.5. Let & be a f-compound of some point process 1 on &. Further suppose that

p=P{ >0} >0, and that C € B is such that On is a.s. simple and nC ==0. Then
Py~ and PB=* are uniquely determined by PE-1, p and C.

Proof. Asin (3.8) we get from Table 1
Ee~#B = Eexp [nBlog Ly(t)], BedB, tcR,, (3.10)

and since Lg(t) — P{f = 0} = 1 — p as { — oo, it follows by dominated convergence
that for arbitrary B¢ &

P{EBZO}Z{EeXP[nBIOg(l—p)] Fo<p<l,
P{nB = 0} ifp=1.
Replacing B by B n C and noting that n(B n C) = (Cn)B, it is seen from Theorem 3.4

or 3.3 respectively that P(C7)™ and hence also P(nC)~! is uniquely determined.
Letting B = C in (3.10), we further obtain

Lgc = Lyg o (—log Lg) ,
1
and since nC (#0 by assumption, L,¢ has a unique inverse L;& on the interval
(P{nC = 0}, 1], and we get
Ly = exp { =Ly o Leo} -

By 15.5.1. this implies that even P~ is unique, and so we may apply Corollary 3.2
to complete the proof. O

3.4.  Exercises

3.1. Show that Theorem 3.1 remains true with F, in (ii) replaced by the class of
simple functions over J. (Cf. Exercise 1.1 for a definition.)

3.2. Show that Theorem 3.3 (and hence also Theorem 3.4) remains true for any ring
U < A and semiring J <= 7 satisfying 6(%) = 6(J) = B. (Hint: Use 15.2.2 to extend
(3.3) to B, and then apply the result of Exercise 2.10. Cf. MATTHES et al. (1978),
Pp. 31, 34.)

3.3. Apply the method involving thinnings and Cox processes to the second asser-
tion in Theorem 3.3 to obtain an alternative to condition (3.6) in Theorem 3.4.

3.4. Let £ = & be a covering class and let s > 0 be fixed. Show that Theorem 3.3
remains true with (3.4) replaced by (3.6) or (3.7).

3.5. Let &, n, % and ¢ be such as in Theorem 3.4, and suppose that (3.5) holds.
Show that, in the point process case,

Ln(/)éL;‘(f)éLu’(f)5 fE_T, Hf”ét,
while in the random measure case,
Ln(f)éL;‘(f)éLnd(f): feJ: |lfl|§t-

3.6. Prove that, if the class £ in Theorem 3.4 is a DC-semiring, then & may be allow
ed to have atoms of fixed size and location. (Cf. the proof of Lemma 7.10 below.)
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3.7. Assume that © is countable. Show that there exists some fixed function f ¢ F
such that P&~ is determined by P(£f)~! for any point process £ on & with £é& < oo a.s.
(Hint: Let the numbers f(s), s € &, be rationally independent and bounded above and
below by positive constants.)

3.8. Show that the distribution of a point process £ on © is not, in general, deter-
mined by P(§B)* for all Be 4. (Cf. LEe (1968) and MATTHES et al. (1978), p. 18.
Hint: It is enough to take & = {1,2} and assume that &¥ =0.)

3.9. Itis essential in Theorem 3.3 that % be aring. In fact, show that if J is the class
of real intervals, then the distribution of a simple point process £ on R is not even
determined, in general, by P(£I)-1, I €J. (Cf. LEE (1968), MorAN (1967) and GoLDMAN
(1967), as well as MarTHES et al. (1978), p. 372. Hint: For arbitrary n ¢ IV, let & be
a simple point process on{l, ..., n}. If n is sufficiently large (= 6), the 2" — 1 inde-

pendent parameters in P:i~! cannot be determined by Y k(n — k + 1) < »3 linear
conditions.) k=1

3.10. Use the method of Exercise 3.9 to show that the distribution of a simple point
process on R is not even determined by all P((1, ... , EL) Y Iy oy I I, with ke IV
fixed. (Cf. Szisz (1970).)

3.11. Suppose that the £, in Lemma 1.7 are simple point processes, and let % — &
be a DC-ring. Show that the mixture of P! exists iff P{§sU = 0} is J -measurable
for every U € U%. Prove an analogous result related to Theorem 3.4.

3.12. Let & be a random measure on &. Show that & has independent increments iff
B¢, ..., By are independent for any ke N and disjoint By, ..., B, € B. (Hint:
Consider arbitrary partitions of By, ..., B, and apply 15.2.1 to each component. Cf.
MATTHES et al. (1978), p. 17.)

3.13. Let % = € — &# be a DC-ring. Show that the first assertion in Theorem 3.3
and the first two assertions in Theorem 3.4 remain true for random elements in (Mg
My), as defined in Exercise 1.8. (Cf. Exercise 2.11.)

3.14. Let pe (0,1], and let & be a p-thinning of 7. Show that £ and 7 are simul-
taneously Cox. (Hint: Use Corollary 3.2.) :

3.15. Let & and 7 be simple point processes (or diffuse random measures) on &,
let % = & be a DC-ring and let ¢ € (0, o] (or ¢ € (0, 00) respectively) be fixed. Show
that & and 7 are independent iff

Ee-téU+n") = Ee-t5UEe-tV, U, Ve l.
(Hint: Proceed as in the proofs of Theorems 3.3 and 3.4.)

3.16. Let & be a Cox process based on 1, and let f: @ —» &' be such as in Exercise
L.9. Show that {f~* is thena Cox process based on /-1, State and prove the correspond-
ing assertion for compound point processes and for randomizations. (Hint: Calculate
L-transforms and use Theorem 3.1.)

3.17. Show that a simple point process & is Poisson iff B is a Poisson variable for
every B ¢ B. (Hint: Let 1 be a Poisson process with intensity E&, and apply Theorem
3.3. Cf. MaTTHES et al. (1978), p. 58.)

3.18. It is enough to assume in Theorem 3.3 that J is such as in Exercise 2.13.
(For a further extension of Theorem 3.3, see Exercise 4.13 below.)




