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Preface to the Second Edition

It was with great satisfaction that I accepted the invitation of the publisher to prepare
a Second Edition of my Riemannian Geometry. Since the book first appeared, numerous
misprints and several errors came to my attention. At an age where printing with the
assistance of a computer has become quite simple, it is somewhat paradoxical that
at the same time it became very time consuming and costly to make changes in a
published text. I highly appreciate that nevertheless the Walter de Gruyter Company
was willing to take into account my suggestions in an oldfashioned way. In particular,
I want to thank Dr. M. Karbe, who supported me through all stages.

Since my Riemannian Geometry first appeared in 1983, the field has experienced a
tremendous growth and extension. In the Second Eddition, I only sporadically can
hint at some of the high lights. Fortunately, there exists an excellent survey of the
state of affairs at the beginning of the Nineties: It is part 3 of volume 54, dedicated
to Riemannian Geometry, in the Proc. Symp. Pure Math., Providence, RI: Amer.
Math. Soc. 1993.

However, there is one result of very recent origin, which I am quite happy to include
into the Second Edition. I call it the Main Theorem for Surfaces of Genus 0 and it
states: There always exist on such a surface infinitely many geometrically distinct closed
geodesics.

It is a truly centennial result since, already in 1905, H. Poincaré showed that on a
convex surface there exists a simple closed geodesic. His work was continued and
extended by G. Birkhoff, L. Lusternik, L. Schnirelmann and many others, until finally,
in 1993, the combined efforts of V. Bangert and J. Franks led to a proof of the Main
Theorem in full generality. In the same year, N. Hingston published a paper which
only uses methods which have been developed in this monograph and avoids the
approach that Franks used. It therefore became quite natural for me to present in
the final section of chapter 3 a complete proof of the Main Theorem. I feel that this
constitutes an important and beautiful finale to my work.

Bonn, Januar 1995 Wilhelm P. A. Klingenberg



Preface

The present book is an outcome of my course on Riemannian Geometry. Its origin can
be traced back to a series of special lectures which I gave during the summer semester
1961 in Bonn. At that time, D. Gromoll and W. Meyer were among my students and in
1967 we jointly published in the Lecture Notes Series our “Riemannsche Geometrie im
Groflen™.

These lectures have met with great interest, because for the first time a concise
introduction into Riemannian Geometry was combined with global methods cul-
minating in the so-called Sphere Theorem, which states that the underlying topological
manifold of a simply connected Riemannian manifold with suitably restricted positive
curvature is a sphere.

Over the past twenty years, global Riemannian Geometry has experienced consider-
able growth in various areas. Here I wish to mention in particular the work of Gromov
[1], [2], [3] on manifolds with restrictions on the curvature and the numerous results on
the eigenvalues of the Laplace operator. Also —and this is the field in which I have been
most active myself — a great number of new results on the existence and on the pro-
perties of closed geodesics have been obtained. For an excellent survey of the present
state of research cf. Yau [1].

It is only natural that in my course I have chosen topics which are close to my own
areas of research. But I have always begun with a full exposition of the classical, local
Riemannian Geometry.

Thus, chapter 1 is devoted to the foundations. What is unusual here is that from the
very beginning I have allowed manifolds to be modelled on separable Hilbert spaces.
This presents no difficulties when compared with the case of finite dimensional mani-
folds and it has the advantage of yielding the necessary framework for later appli-
cations in chapter 2. Of course, there are some differences between Hilbert manifolds
and finite dimensional manifolds, which appear for the first time when considering the
tensor product. However, for most of the basic results, the step from finite dimensions
to Hilbert space is no bigger than the step from 2 dimensions to »n dimensions.
Whenever the restriction to the finite dimensional case brings about some simplifi-
cation, I have pointed this out clearly.

In chapter 1 —and the same is true for the later chapters — the first part of a section is
usually more basic than the rest. At least this is the case when the sections are longer
than 10 pages or so. While the expert will have no difficulty in constructing a ‘basic
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course’ from our material, the beginner should keep in mind that it might be wise to
switch to the next section when he reaches subjects like general vector bundles, submer-
sions or focal points, to mention a few. He can always return to the previous sections
when the need arises.

In chapter 2, entitled Curvature and Topology, 1 restrict myself to finite dimensional
manifolds because the local compactness of the manifold is needed. Complete mani-
folds are studied and there follows a rather complete account of the theory of sym-
metric spaces from the point of view of Riemannian Geometry which differs from the
usual, more algebraic approach. After this, I develop in three sections the basic theory
of the manifold of curves. Here, I take advantage of the fact that in chapter 1
Riemannian manifolds modelled on Hilbert Spaces were allowed.

When it comes to the critical point theory I only develop the Lusternik-
Schnirelmann approach. I do not enter into the much more delicate Morse Theory.
The full power of this approach has not been sufficiently recognized. Among other
things I show that one can give a completely elementary proof of the fundamental
estimate on the injectivity radius of 1/4-pinched manifolds.

The chapter continues with a simplified proof of the Alexandrov-Toponogov
Comparison Theorem. This is an essential tool in the proof of the Sphere Theorem,
given in the next section. I conclude with the basic constructions on non-compact
manifolds of positive curvature.

With the end of chapter 2 I have covered all the material contained in the
“Riemannsche Geometrie im GroBen” and indeed much more; e.g., symmetric spaces
and the manifold of curves with its various important submanifolds.

In chapter 3, entitled Structure of the Geodesic Flow, 1 deal with a subject which,
traditionally, is not presented in a course on Riemannian Geometry. I feel, however,
that this field should not be left to specialists in ergodic theory or Hamiltonian systems.
Rather, it should be tied more closely to Riemannian Geometry proper. In fact, it is
one of the oldest fields of research. Thus, e.g., the geodesic flow on the ellipsoid was
even studied by C.G.J.Jacobi and the problem of stability for periodic orbits plays a
fundamental rdle in Poincaré’s investigations on Celestial Mechanics. I present many
of the classical results together with numerous examples. Among them, there are
theorems for periodic orbits with elementary proofs employing only the Lusternik-
Schnirelmann theory developed in chapter 2. The last two sections deal with manifolds
of non-positive curvature. Here, in particular the case of strictly negative curvature is
treated for the first time in a monograph, with elementary proofs of many of the basic
results in this important area.

After this brief description of the contents, it would certainly take more space to
describe what has been omitted. To have an idea of topics not covered in this book see
e.g. Chern [2] and de Rham [2]. Most notable is the absence of integration methods. It
isclear that on Hilbert manifolds differential forms are bound to play a lesser role than
on manifolds of finite dimension. But the deeper explanation for this and for most of
the other omissions is simply that a book on mathematics, like any other literary work,
is necessarily prejudiced by the personal experiences of the author and thus reveals
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strong autobiographical traits. As a matter of fact, I have composed this monograph
around my own area of research in Riemannian geometry over the past 25 years,
thereby including the work of youn ger colleagues who I had the privilege of meeting to
mutual advantage. I have no other excuse to proffer for the selection of the contents,
except that I am convinced that my choice represents a lasting contribution to the field
and that future fruitful developments seem most likely.

Thus, I hope that my efforts in writing this book over many years will not just be a
record of results and methods but will also serve as an impetus towards further
research.

It only remains to express my gratitude to the people who helped me with the
manuscript, by reading whole sections. I wish to mention in particular W. Ballmann,
V.Bangert, J. Eschenburg, H. Matthias, A.Thimm, G.Thorbergsson and F. Wolter.
Finally, I wish to thank Walter de Gruyter & Co. for accepting my manuscript in their
new series ‘Studies in Mathematics’.

Bonn, 1982 Wilhelm Klingenberg
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Chapter 1: Foundations

This chapter contains the basic definitions and results on differentiable manifolds,
vector and tensor bundles over such manifolds and Riemannian metrics. The material
presented here differs little from that in other well-known text books, except that we
consider manifolds modelled on Hilbert spaces rather than on finite dimensional
spaces. This will be useful in Chapter 2 and presents no conceptual difficulties anyway,
as was demonstrated by Lang [1].

Not quite standard in our chapter on the Foundations is the discussion of submer-
sions (see 1.11) and Jacobi fields (see 1.12). This constitutes a first step towards global
geometry, which is the subject of the remainder of the book.

1.0 Review of Differential Calculus and Topology

In this section we set forth some notation and recall some basic properties of differenti-
able maps between Banach spaces. For details we refer to Dieudonné [1] and Lang [1].
We shall conclude with some facts on topological spaces. Reference will be made to
Bourbaki [1].

1. Wedenote by E, E; E,, ..., F, F; F,, ... real Banach spaces. In fact, most of the
time these will actually be separable (complete) Hilbert spaces. Subspaces are always
assumed to be closed and linear mappings are assumed to be continuous.

Note. Subspaces of finite dimension or finite codimension are always closed.

We say that a closed (linear) subspace E’ of [E splits if there exists a closed comple-
ment E”” such that E is isomorphic to E” x E”. Note that for a Hilbert space E, every
subspace E” splits: Take for E”” the orthogonal complement of E’.

Let F: E — F bean injective linear mapping whose image is a closed subspace . F
is called a splitting mapping if [’ splits, i.e., if F = [’ x F”. More generally, a linear
mapping F: E — F with closed image is called a splitting mapping if the induced
injection E/ker F — [ splits. Again, for Hilbert spaces, any closed linear mapping
splits — closed means that the image is a closed subspace.

Let us denote by L(E; [) the vector space of linear mappings F: E — F. L(E; [F)
becomes a Banach space by taking as norm | F| of an Fe L(E; F) the greatest lower
bound of all numbers k such that
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|F. X|<k|X|, forall XeE.

If F and F are finite dimensional, one can define a scalar producton L(E, F) soasto
make it into a (finite dimensional) Hilbert space, see (1.0.2).
More generally, we define a norm on the space

E(Fys 205 B G)
of r-linear mappings from F, x ... x [, into G by taking for | F| the greatest lower
bound of real numbers k satisfying
|F(Xy, ..., X)I<k| X ]| ... | X,
where (X, ...,X)e Fyx...x [F,.
With this, the canonical mapping
L(Fy; L(F,;...; L(F,; G)) - L(F,, Fy, ..., F,; G)
from the space of iterated linear maps into the space of multilinear maps becomes a
Banach space isomorphism.

Of particular importance are the various tensor spaces associated to a Hilbert space
E. Let E* denote the dual of E. Then

TrE = L(E*, ..., E% E, ..., E; R)
r s
is called the space of r-fold contravariant and s-fold covariant tensors.
We also use 7;" E to denote any of the (r +s)!/r!s! spaces L(E,,..., E, .4; R),

where r of the E; are equal to E* and the remaining s of the E; are equal to E.
Since L(E*; R) = E; L(E;R) = E* we have for rs >0

TrE=L(E* ...,E*E, ..., E;R) ~L(E* ...,E* E,..., E; E)

r s r—1 K
STE™ oo EYLE, oy EZE®)
il o dos s i B
r s—1

and
TPE =2 E*; TPE=E.

A word to explain the terminology: Takee.g. Xe Ty E = E, a 1-fold contravariant
tensor. Let F: E — E be an automorphism. Choose an (orthonormal) Hilbert basis
{e;} and its dual {e'}. Then the i-th coordinate of X ist given by X’ = (¢!, X> where we
denote by <, ) the canonical pairing E* x E — R. The i-th coordinate of FX is given by
X''=<(e',FX) = ('Fé', X),'"F: E* - E* being the transpose of F. That is, X"
=Y (F), X* where the ('F); are the elements of the transposed matrix 'F of F. Thus,

k
the coordinates of a vector are transformed with the transposed matrix which is why X

is called contravariant.
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Let [ be a Banach space. By GL ([F) we mean the group of (linear) automorphisms of
F. Consider a tensor space 7" E of the Hilbert space E. Then we have a canonical group
morphism

T7: GL(E) » GL(1E)

given by associating with {F: E - E} e GL(E) the mapping
TF: §TE—TE;
XI— XTo(Fx..x'Fx F1x.. . xF),

r A

where ‘F: E* — E* is the transpose of F.

Indeed, one verifies at once that 7" F is linear and that 7" (F, - F}) = I, F, o 1] F;.
Moreover, T (id| E) = id| E;. Thus 7;" is what is called in category theory a covariant
Sfunctor.

A subspace of 7" E which isinvariant under the subgroup 7,”GL(E) of GL(Z] E) is
called a (general) tensor space.
We give two important examples of such general tensor spaces in 7.°[E
=L(E,...,E;R):

il Yoy
s

(1) The space S, E of s-fold covariant and symmetric tensors consists of those ele-

ments Z2 e T.° E which satisfy

Z?(Xa(l)a cevs Xa’(s)) = Zso (Xla ) Xs),

for all permutations ¢ of the set {1, ..., s}.
(ii) The space A E of s-fold covariant antisymmetric tensors consisting of the
Z2e T° E satisfying
Z.?(Xo'(l), sieiey Xa(s)) = Signo-Zso(Xla ey Xs),
for all permutations ¢ of {1, ..., s}.
We see that if dim E = n < o0, then
dim S;E=m+s—1)!/s!(n—1)! whereas
/s'(n—ys)!, forl1<s<n
dim 4, E = {" (n—s)
0 , fors>n

We conclude this section by indicating some canonical isomorphisms between
spaces of linear maps when all vector spaces have finite dimension.

Recall that the tensor product E @ [ of two vector spaces E and [ is characterized
by the following properties:

(i) There exists a bilinear mapping

P ExFEQF(XLY)—~X®Y

such that the image generates E ® [ as a vector space.
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(i) Given any bilinear map FeL(E, F;G), there exists a unique
GeL(EQ® F; G) with F=Go- ®.

In particular, if {e;}, {f]} are bases of E resp. F, then {e; ® f;} isa basisfor E ® [.

One has the canonical isomorphisms:

LE®F; G)=L(E, F; G) =L(E; L(F; G))

L(E; F*) = E* ® F*
For instance, Fe L(E; [*) correspondsto Y <{f;, F(e)) €' ® f/ where {e'}, { f'} are
the dual bases of the bases {e;}, {f;} of E aniaj F. Combining these isomorphisms, we
get the
1.0.1 Proposition. Let dim E <oo. Then

LTE~2E®.. QEQE*®...® E*

r S

and also
TTE~L(E,. . EE®..®F)=
ST i S e o
s r
LE,. . EE*QE®...®LE) etc. O
g

s—1 r

Note. The concept of the projective tensor product for Banach spaces allows one to
extend these isomorphisms to the case of infinite dimensions. See Schatten [1].

For later use we point out another feature of vector spaces E of finite dimension.

1.0.2 Proposition. Let dim E = n < o0. Let {, ) denote the scalar product on E. Then on
17 E this determines intrinsically a scalar product as follows: Let {e;}, 1<i<n, be an
orthonormal basis for E. Together with the dual basis {€'},i<j<n, the

el h=60..0¢0Q.. Ok
Jor 1<iy, ..., i, <n; 1<), ..., ji<n

form a basis for T, E. Now define the metric on T E by letting this basis be orthonormal.
This definition is independent of the choice of the orthonormal bases {e;}.
Proof. Any two orthonormal bases {¢;}, {¢/} are related by an orthogonal trans-
formation 4 = (d¥):

e = Z a e, Za:‘a’l‘ = dy;-
k k
The corresponding bases

{edih {ehd)

b ly
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then are related by the linear transformation 7;" 4, i.e.,

yeds = ky gk pi s 11---1
L /.-,,Z,k,a’ ..ag bf...b/e, x

Here e/ = Z be', ie., (b’) ist the transposed inverse or contragradient ‘A~! of A.

From A'A E,(‘fA™")'("A™") = E wesee that the e * also form an orthonormal
basis. That is to say, 4 € © (E) implies 7,4 € O (7 [E) O

2.Llet U< F, U < [’ be open sets. Let F: U — U’ be a mapping. F'is called differ-
entiable at uy € U if there exists a DF(uy) e L([F; F’) such that

F(u) — F(uo) — DF (uo) - (u — uo) = o(|u — o).

Here, o(r) satisfies 161}1 llo(r)/r|| = 0. Fis called differentiable of class C! if it is
differentiable for all e U and ue U~ DF(u)e L(F; F’) is continuous.

That F: U — U’ is differentiable of class C" is defined by induction. Assume we have
defined D"~ 'F as a mapping from U into L(F;L(F;... L(F; F’)) which we can
identify with L(F, F,...; F’), with (r — 1) times F. If D"~ ! Fis differentiable of class
C!, put D(D""'F) = D"F and call F differentiable of class C".

Finally, we call F: U — U’ differentiable, if it is differentiable of class C" for all r.

Sometimes we will find it convenient to use the language of categories and functors.
Thus we may speak of the category formed by the open subsets of Banach spaces as
objects and the differentiable mappings between them as morphisms. This means that
with

F:U<ck > U<ck,; K: U, =k, >U,cE;,
being differentiable the composition
FoF:U - U

is also differentiable. Moreover, id,: U< E — U < [E is differentiable.

Let U < [ beopen. Forevery u, € U we define the tangent space T, U of Uatu, as
the set {(uy, X); X € E}, endowed with the vector space structure arising from the
canonical mapping

pry: (up, \)e T, U XeE

The collection of the tangent spaces 7, U, u, € U, is denoted by TU. The canonical
isomorphism

TU=UxE

makes 7'U into an open subset of E x E.
The projection pry: U x E — U onto the first factor will also be written as

t=1y: TU > U; (ug, X) = uy.

Ty is called tangent bundle of U. TU is called the total tangent space of U and t ist called
the projection of the tangent bundle.
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For a differentiable
F-UcE->Vcl
we define the tangential of F,
TF: TU - TV,

by (u, X)— (F(u), DF(u) . X).

Note that, for each u € U, the restriction 7, F= TF|T, U is a linear mapping which
is completely determined by the differential DF(u): E — [F. For this reason, DF(u)
and T, F sometimes are identified. But basically, DF(u) is a mapping from [E to F
while 7, F is a mapping between tangent spaces of E and [F.

Associating with F: U — V its tangential 7F: U x E - V' x | constitutes a co-
variant functor from the category of differentiable mappings between open sets into
the same category. Indeed, let

F:Uclk; > U,<lk,; F,: U<k, > U; <k,
be morphisms. Then the morphisms
T(FKoF): TU, —» TU,; TF,- TK: TU;, - TU,

are the same. And the tangential 7id; of the identity mapping idy: U — U is the
identity mapping idry: TU — TU.

Actually, the tangential is a special sort of morphism; it preserves the product struc-
ture U x E of the objects TU. This amounts to the commutativity of the diagram

1F
Ux E=TU TV=VxE

F
U — V

Moreover, the restrictions 7, F = TF| T, U are linear. Therefore we may say that the
pair (F, TF) becomes a morphism in the category of tangent bundles of the open sets U
of Banach spaces.

3. We continue with the inverse mapping theorem and two corollaries concerning
locally injective and locally surjective differentiable mappings. For our later appli-
cations it suffices to consider the case that all spaces are Hilbert spaces.

1.0.3 Theorem. Let U be an open neighborhood of 0€ E. Let
*) F:U- F,F(0)=0
be differentiable such that DF(0): E — [ isa(bijective) isomorphism. Then Fis a local
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diffeomorphism. That is to say, there exist open neighborhoods U; V' of 0e [, O€ T,
U’ < U, such that F|U : U — V' is a diffeomorphism.

A diffeomorphism is a differentiable homeomorphism such that also the inverse is
differentiable.

1.0.4 Corollary 1. Assume that the mapping F, (*), has the property that DF(0): E — [F
is an isomorphism with a closed subspace F, of F. Write F = F, x F,. Then there exists
a local diffeomorphism

g:F->F xF;;2(0=0
and an open neighborhood U, = U of 0€ E such that
go(F|Uy): Uy —» Uy x {0} = E x {0} =F; x {0} =F

is the canonical linear injection.

1.0.5 Corollary 2. Assume that the mapping F, (*), has the property that DF(0): E — [
is surjective. Write E = E; x E, with DF(0)|E,: E, > F bijective, i.e., E, = F via
DF(0)|E,. Then there exists a local diffeomorphism

h: (U, x U,,0) =(E; x E,, 0)— (E0)
with U; an open neighborhood of 0€ [E; such that
Foh:UxU,-»U,clk,=F

is the projection pr, onto the second factor.

Note. If E, | are Banach spaces, one must assume that ker DF(0) splits.

Proof. For the proof of (1.0.3) one uses the contraction lemma. For details we refer
to the literature, cf. Dieudonné [1], Lang [1].

Corollary 1 is deduced from the theorem by extending F: U — [F to a locally inver-
tible mapping

P:Ux F,cbEx F,2F-> F;x F,; (uvy)— F(u)+(0,v,).
Indeed, D®(0,0) = DF(0) + (0, id|F,). Taking g as the local inverse of @ we prove

our claim.
Similarly, for the proof of Corollary 2, we consider

Q:UE, x E,2Ey x Fo E; x Ey;  (uy, uy) > (uy, Fluy, uy)).
Then D®(0) = (id| E,, 0) + (DF(0)| E;, DF(0)| E,), i.e., D®(0) is bijective. Taking

for 4 the local inverse of @ we get a mapping satisfying our requirements.

4. A topological space M is called metrizable if there exists a metric on M which
induces the given topology.
M is called separable if it possesses a countable base for the open sets. For metric
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spaces this is equivalent to saying that there exists a countable dense set of points in M.
Let (M,),. 4 be an open covering of M. That is, all M, are open and every pe M is

contained in some M,. An open covering (M 3)pes of M will be called refinement of the

covering (M,),. 4 if there exists a mapping o: B — A such that A7[,, =M .

An open covering (M,),. , of M iscalled locally finite if every point p € M possesses
a neighborhood U such that Un M, +0 for finitely many « only.

A topological space M is called paracompact if every open covering of M possesses a
locally finite refinement. Clearly, a compact space is paracompact. So are finite dimen-
sional Banach spaces. An important sufficient condition for a space to be paracompact
is that it is metrizable.

The property of a topological space to be metrizable is preserved under the operat-
ions of forming products and taking subsets. Our interest in this property stems from
the fact that we will be considering Riemannian manifolds on which the Riemannian
structure defines a metric which induces the given topology.

A partition of unity on a topological space M consists of a family (¢, M s)pep- Here,
(1171,,),,53 forms a locally finite open covering of M and ¢z: M — R is continuous >0
with {¢; >0} =M, and Y ¢s(p) =1, forall pe M.

]

A topological space M is said to admit partitions of unity if, for every open covering
(M), 4 there exists a partition of unity (¢;, M,,),;E,, with (M,,)ﬁeB being a refine-
ment of (M,),.,. A paracompact separable space admits partitions of unity.

If M is a differentiable manifold in the sense of definition (1.1.2) then M even admits
differentiable partitions of unity, i.e., the functions ¢,: M — R are of class C*. Cf.
Lang [1]. For the finite dimensional case cf. also Hirsch [1] and Sulanke und Wintgen

[1].

1.1 Differentiable Manifolds

In this section we introduce the concept of a differentiable manifold A, modelled on a
(separable) Hilbert space E. Essentially, this is a topological space which locally looks
like an open set U of E. Such a local representation of M is called achart. So far, M is
only a topological manifold. What makes M into a differentiable manifold is that the
transition mappings, determined by the overlap of two charts, are diffeomorphisms, cf.
(1.1.2).

The morphisms, i.e., the structure preserving mappings between differentiable
manifolds, are introduced in (1.1.4). With this, we get the category of differentiable
manifolds and mappings, see (1.1.5).

We conclude by showing that differentiable mappings can be localized. This means
that every differentiable mapping, defined on some open set of a manifold M, when
restricted to a suitable open neighborhood of a point p e M, can be viewed as the
restriction of a differentiable mapping defined on all of M. Thus, for local properties,
there is no difference between local and global morphisms.



