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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. . ., new challenges. Much of this development work resides in in-
dustrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

In some Advances in Industrial Control monographs, the author’s perspective
is one of looking back at successful developments that have found application in
practice. Other monographs in the series explore future possibilities, presenting a
coherent body of theory with supporting illustrative examples and case studies. This
entry to the Advances in Industrial Control series, Networked and Distributed Pre-
dictive Control: Methods and Nonlinear Process Network Applications by Panagi-
otis D. Christofides, Jinfeng Liu, and David Mufioz de la Pefia is a very persuasive
exemplar of the “future possibilities” monograph category.

The starting point for the authors’ development is the question: if a process has
an existing point-to-point (hard-wired) control system, how do we design a net-
worked control system (wired or, more in tune with recent technological develop-
ments, wireless) to augment the existing control and what performance benefits can
be achieved? What follows from this is a thorough analysis and assessment of differ-
ent control architectures blended with advanced control design methods. The control
design techniques are selected as model predictive control for nonlinear processes
but accommodating typical disruptive network characteristics of asynchronous feed-
back and communication delays.

The reader, whether an industrial engineer or academic researcher, will find a
coherent theoretical development that unites model predictive control and Lyapunov
stability methods as a control technique termed Lyapunov-based model predictive
control. This is shown to have some nice properties of practical utility concerning
closed loop stability and the stability region. The authors use this technique and
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viii Series Editors’ Foreword

progress through a sequence of increasingly advanced networked control system
configurations, devoting a chapter to each particular control structure.

A major strength of the monograph is the attention given to careful and detailed
process control examples and case studies that illustrate the characteristics and per-
formance potential of individual networked control systems. One of these is an in-
depth case study treatment of a wind—solar energy generation plant, whilst other ex-
amples are taken from the chemical process industries. All that is missing from these
studies is an estimate of implementation costs and a cost benefit analysis! Process,
chemical, and control engineers will find these simulated examples illuminating.

As a forward-looking monograph series on control design, technology, imple-
mentation and industrial practice, we are pleased to add this volume to the series as
its first entry on networked control systems. As wireless control technology gains
in reliability we expect to see many further theoretical and practical developments
in this field. This monograph also complements the Advances in Industrial Con-
trol series’s first entry on the closely related field of control using the Internet, so
that readers may find the monograph, Internet-based Control Systems: Design and
Applications (ISBN 978-1-84996-358-9) by Shuang-Hua Yang of interest.

Industrial Control Centre M.J. Grimble

Glasgow M.A. Johnson
Scotland, UK



Preface

Traditionally, process control systems rely on control architectures utilizing dedi-
cated, wired links to measurement sensors and control actuators to regulate appro-
priate process variables at desired values. While this paradigm to process control
has been successful, we are currently witnessing an augmentation of the existing,
dedicated control systems, with additional networked (wired and/or wireless) actu-
ator/sensor devices which have become cheap and easy-to-install. Such an augmen-
tation in sensor information, actuation capability and network-based availability of
data has the potential to dramatically improve the ability of process control systems
to optimize closed-loop performance and prevent or deal with abnormal situations
more effectively. However, augmenting dedicated control systems with real-time
sensor and actuator networks poses a number of new challenges in control system
design that cannot be addressed with traditional process control methods, including:
(a) the handling of additional, potentially asynchronous and delayed measurements
in the overall networked control system, and (b) the substantial increase in the num-
ber of process state variables, manipulated inputs and measurements which may
impede the ability of centralized control systems (particularly when nonlinear con-
strained optimization-based control systems like model predictive control are used),
to carry out real-time calculations within the limits set by process dynamics and
operating conditions.

This book presents rigorous, yet practical, methods for the design of networked
and distributed predictive control systems for chemical processes described by non-
linear dynamic models. Beginning with an introduction to the motivation and ob-
jectives of this book, the design of model predictive control systems via Lyapunov-
based control techniques accounting for networked control-relevant issues, like han-
dling of asynchronous and delayed measurements, is first presented. Then, the book
focuses on the development of a two-tier networked control architecture which nat-
urally augments dedicated control systems with networked control systems to main-
tain closed-loop stability and significantly improve closed-loop performance. Sub-
sequently, the book focuses on the design of distributed predictive control systems,
that utilize a fraction of the time required by the respective centralized control sys-
tems, to cooperate in an efficient fashion and to compute optimal manipulated input

ix
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trajectories that achieve the desired stability, performance, and robustness for large-
scale nonlinear process networks. Throughout the book, the control methods are
applied to large-scale nonlinear process networks and wind—solar energy genera-
tion systems and their effectiveness and performance are evaluated through detailed
computer simulations.

The book requires basic knowledge of differential equations, linear and nonlinear
control theory, and optimization methods and is intended for researchers, graduate
students, and process control engineers. Throughout the book, practical implemen-
tation issues are discussed to help engineers and researchers understand the appli-
cation of the methods in greater depth.

In addition to our work, Prof. James F. Davis, Dr. Benjamin J. Ohran, doctoral
candidates Mohsen Heidarinejad and Xianzhong Chen, and doctoral student Wei Qi,
all at UCLA, contributed substantially to the research results included in the book
and in the preparation of the final manuscript. We would like to thank them for their
hard work and contributions. We would also like to thank all the other people who
contributed in some way to this project. In particular, we would like to thank our
colleagues at UCLA and the Universidad de Sevilla for creating a pleasant working
environment, and the United States National Science Foundation and the European
Commission for financial support. Last, but not least, we would like to express our
deepest gratitude to our families for their dedication, encouragement, and support
over the course of this project. We dedicate this book to them.

Los Angeles, CA, USA Panagiotis D. Christofides
Seville, Spain Jinfeng Liu
David Muiioz de la Pefia



Abbreviations

CSTR
DMPC
LCS
LMPC
MPC
NCS
PI

PID
RHC

Continuous stirred tank reactor
Distributed model predictive control
Local control system

Lyapunov-based model predictive control
Model predictive control

Networked control system
Proportional-integral
Proportional-integral-derivative
Receding horizon control
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