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Preface

Despite the rapid advances in Jordan theory and its diverse applications in
the last two decades, there are few convenient references in book form for
beginners and researchers in the field. This book is a modest attempt to fill part
of this gap. v

The aim of the book is to introduce to a wide readership, including research
students, the close connections between Jordan algebras, geometry, and analy-
sis. In particular, we give a self-contained and systematic exposition of a Jordan
algebraic approach to symmetric manifolds which may be infinite-dimensional,
and some fundamental results of Jordan theory in complex and functional
analysis. In short, this book is about Jordan geometric analysis.

Although the concept of a Jordan algebra was introduced originally for quan-
tum formalism, by P. Jordan, J. von Neumann and E. Wigner [64], unexpected
and fruitful connections with Lie algebras, geometry and analysis were soon
discovered. In the last three decades, many more applications of Jordan alge-
braic structures have been found. We expose some of these applications in this
book. Needless to say, the choice of topics is influenced by the author’s predilec-
tions, and regrettable omissions are inevitable if the length of the book is to
be kept manageable. Nevertheless, an effort has been made to cover sufficient
basic results and Jordan techniques to provide a handy reference.

We begin by discussing the basic structures of Jordan algebras and Jordan
triple systems in Chapter 1, and the connections of these Jordan structures to
Lie theory. An important link is the Tits—Kantor—Koecher construction, which
establishes the correspondence between Jordan triple systems and a class of
graded Lie algebras. We discuss some details of classical matrix Lie groups and
their Lie algebras and use them as examples to illustrate these connections, as
well as preparation for the introduction of Banach Lie groups in the following
chapter.
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Since E. Cartan’s seminal work, Lie theory has been an important tool in the
study of Riemannian symmetric spaces and their classification. It was found
relatively recently that Jordan algebras and Jordan triple systems can be used
to give an algebraic description of a large class of symmetric spaces which
is also accessible in infinite dimension. This is the subject of Chapter 2. We
give a concise introduction to Banach manifolds and Banach Lie groups. We
show the connections between Jordan algebras and symmetric cones, and the
correspondence of Jordan triple systems and Riemannian symmetric spaces in
the infinite-dimensional setting. We complete the discussion by showing that
the bounded symmetric domains in complex Banach spaces are exactly the
open unit balls of JB*-triples which are complex Banach spaces equipped with
a Jordan triple structure.

A large part of Chapter 3 is devoted to the study of JB*-triples. They play
an important role in geometry and analysis, as informed by the previous result.
The open unit balls of JB*-triples can be regarded as an infinite-dimensional
generalisation of the open unit disc in the complex plane and provide a nat-
ural setting for complex function theory. As examples, we discuss distortion
theorems and iterations of holomorphic maps on these open balls, where Jordan
techniques come into play. In a functional-analytic vista, JB*-triples form an
important class of Banach spaces, which includes C*-algebras, spaces of oper-
ators between Hilbert spaces and some exceptional Jordan algebras. We present
a sufficient number of basic properties of JB*-triples as research tools, but a
complete treatment would lengthen the book to excess. From the viewpoint
of JB*-triples, many results in C*-algebras, for example, those on contractive
projections and isometries, can be explained simply in a geometric perspective.
Finally, we discuss Jordan structures in Hilbert spaces, which are important
in the geometry of infinite-dimensional Riemannian symmetric spaces; for
instance, the curvature tensor is related to the Jordan triple product. The last
chapter contains some new results.

It is a great pleasure to thank many colleagues and friends for valuable
conversations concerning the subject matter of this book. 1 have benefited
especially from inspiring discussions with Wilhelm Kaup and the late Issac
Kantor on many occasions. I thank Pauline Mellon for reading part of the
manuscript and for her useful comments. I much appreciate the sabbatical
leave from Queen Mary College in 2010, which enabled me to complete the
manuscript. I would also like to thank my wife, Yen, and my daughter, Clio,
for their constant support and encouragement.
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1
Jordan and Lie theory

1.1 Jordan algebras

We begin by discussing the basic structures and some examples of Jordan
algebras which are relevant in later chapters. One important feature is that
multiplication in these algebras need not be associative.

By an algebra we mean a vector space .4 over a field, equipped with a
bilinear product (a, b) € A? > ab € A. We do not assume associativity of the
product. If the product is associative, we call A associative.

Homomorphisms and isomorphisms between two algebras are defined as in
the case of associative algebras. An antiautomorphism of an algebra A is a
linear bijection ¢ : A —> A such that g(ab) = ¢(b)gp(a) forall a, b € A.

We call an algebra A unital if it contains an identity, which will always be
denoted by 1, unless stated otherwise. As usual, one can adjoint an identity 1
to a nonunital algebra A to form a unital algebra .A,, called the unit extension
of A.

A Jordan algebra is a commutative algebra over a field F, and satisfies the
Jordan identity

(ab)a® = a(ba*) (a,b e A).

We always assume that [ is not of characteristic 2; however, in later sections,
IF is usually either R or C.

The concept of a Jordan algebra was introduced by P. Jordan, J. von Neumann,
and E. Wigner [64] to formulate an algebraic model for quantum mechanics.
They introduced the notion of an r-number system which is, in modern ter-
minology, a finite-dimensional, formally real Jordan algebra. In fact, the term
Jordan algebra first appeared in an article by A. A. Albert [3]. It denotes an

|



2 Jordan and Lie theory

algebra of linear transformations closed in the product
1
A-B= E(AB+ BA).

Although Jordan algebras were motivated by quantum formalism, unexpected
and important applications in algebra, geometry and analysis have been dis-
covered. Some of these discoveries are the subject of discussions in ensuing
chapters.

On any associative algebra A, a product o can be defined by

1
aob:i(ab%—ba) (a,be A,

where the product on the right-hand side is the original product of A. The
algebra A becomes a Jordan algebra with the product o. We call this product
special. A Jordan algebra is called special if it is isomorphic to, and hence
identified with, a Jordan subalgebra of an associative algebra .A with respect to
the special Jordan product o. Otherwise, it is called exceptional.

It is often convenient to express the Jordan identity as an operator identity.
Given an algebra A and a € A, we define a linear map L, : A — A, called
left multiplication by a, as follows:

L,(x)=ax (x € A).
The Jordan identity can be expressed as
[La, L2l =0 (a € A),

where [-, -] is the usual Lie bracket product of linear maps. Givena, b € A, we

define the quadratic operator Q, : A —> A and box operatorac b : A —
A by

Qazszzl_Lalv aob = Ly + [La, Lp]. (L.1)

These operators are fundamental in Jordan theory, as is the linearization of the
quadratic operator:

Qa.b = Qa-H) — Qa — Op-
Let A be an algebra and let a € A. We define a’ = 1 if A is unital,
a'=a, a*'=aa" n=1,2,...).

The following power associative property depends on the assumption that the
scalar field IF for .4 is not of characteristic 2.



1.1 Jordan algebras 3

Theorem 1.1.1 A Jordan algebra A is power associative; that is,

m_ _n m-+n

a"a" =a (ae A;mn=1,2,...).
In fact, we have L, Lyn] = 0.
Proof For any «, § in the underlying field F, we have

[Latab+pes L(a+ab+ﬂc)1] =0

for all a, b, ¢ € A. Expanding the product, we find that the coefficient of the
term af is

2[L(l~ Lb(‘] + Z[Lb~ L('u] + 2[Lrv Lub]-
which must be 0. Since F is not of characteristic 2, we have
[Laa LIJ(‘] + [Lbs L(‘u] + [LC“ Ldb] =0.

Applying this operator identity to an element x € A and using commutativity
of the Jordan product yields
(LyLpe + LpLeg + Lo Lyp)(x)

= (LpcLa+ Lealp + LapLe)(x)

= LpcL(a) + Ly Lc(a) + Ly Lip(a)

= (LpeLx + LexLp + Lyp L) (a)

= (LxLpc + LpLex + LeLip)(a)

= (L(eyay + LoLaLe + LeLaLp)(x).
Putting b = a" and ¢ = a in this identity, we obtain a recursive formula,

Lgw» =2L,Lgw+t + LanLys — Lgn L2, —L2 Lo,

which implies that each L, is a polynomial in L, and L,> which commute. It
follows that L,» commutes with L.~ for all m, n € N. In particular, we have

L g Lu(am) = L,Lu (am )s
and power associativity follows from induction. O

Corollary 1.1.2 Let A be a Jordan algebra and let a € A. The subalgebra
A(a) generated by a in A is associative.

In fact, we have the following deeper result. It can be derived from
Macdonald’s theorem, which states that if an identity in 3 variables is linear in
1 variable and holds in all special Jordan algebras, then it holds in all Jordan
algebras. We omit the proof, which can be found, for instance, in the books
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by Jacobson [62], McCrimmon [88], and Zhevlakov et al. [123]. We remark,
however, that for Jordan algebras over a field of characteristic 2, a Jordan
algebra with a single generator need not be special.

Shirshov—Cohn Theorem Let A be a Jordan algebra and let a, b € A. Then
the Jordan subalgebra B generated by a, b (and 1, if A is unital) is special.

One can use the Shirshov—Cohn theorem to establish various identities in
Jordan algebras. For instance, in any Jordan algebra A, we have the identity

2L —3LpaLy+ Ly =0 (1.2)
for each a € A. In other words, we have
2a(a(ab)) — 3a2(ab) +a’h=0

for a, b € A. To see this, let 3 be the Jordan subalgebra of A generated by a
and b. Then it is special and hence embeds in some associative algebra (A’, x)
with

ab:%(axb%—bXa).
In B, we have
2a(a(ab))=}1(a3><b—f—3a2 xbxa+3axbxa2+bx03)
3az(ab)=%(3a3 xb+3a>xbxa+3axbxa’+3bxa),

which, together with 2a’h = a® x b + b x a*, verifies the identity.

Definition 1.1.3 Two elements a and b in a Jordan algebra A are said to
operator commute if the left multiplications L, and L, commute. The centre
of Aistheset Z(A)={ze€e A: L,L, = L,L,,Va € A}.

We observe that L,L;, = L,L, if, and only if, (ax)b = a(xb) for all x € A.
Evidently, the centre Z(A) = {z € A : (za)b = z(ab),Va, b € A} is an asso-
ciative subalgebra of A.

Example 1.1.4 The Cayley algebra O, known as the octonions, is a complex

nonassociative algebra with a basis {eg, e, . . ., e7} and satisfies
a’*bh = a(ab), ab®> = (ab)b  (a,b € 0), (1.3)
where ¢ is the identity of O, ef = —¢q for j # 0, and the multiplication is

encoded in the following Fano plane, consisting of seven points and seven
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lines. The points are the basis elements but ¢, and the lines are the sides of
the triangle, together with the circle. Each line has a cyclic ordering shown by
the arrow. If ¢;, ¢; and ¢; are cyclically ordered, then eie; = —eje; = e;. For
instance, ege; = (—eser)e; = —e4e§ = ey4.

Octonion multiplication

The algebra O is an alternative algebra in the sense that the associator
[x,y,z] = (xy)z — x(yz)

is an alternating function of x, y, z: exchanging any two variables entails a sign
change of the function. This condition is a reformulation of the multiplication
rules in (1.3).

We will denote by O the real Caylay algebra, which is the real subalgebra of
O with basis {ey, . . ., e7}. Historically, octonions were discovered by a process
of duplicating the real numbers R. Indeed, the complex numbers arise from R
as the product R x R with the multiplication

(a, b)(c,d) = (ac — db, bc + da) (a,b,c,d e R).

The real associative quaternion algebra H can be constructed by an analogous
duplication process. One can define H as C x C with the multiplication

(a,b)(c,d) = (ac —db,bé +da)  (a,b,c,d € C),
which is isomorphic to the following real non-commutative algebra of 2 x 2
matrices:
a b
{( - _):(a.b)e(Cx(C]. (1.4)
—b a

In the identification with this algebra, H has a basis

R R !
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satisfying
i?=j =k’ =ijk = -1, ij=—-ji=k
Likewise, O can be defined as the product H x H with the multiplication
(a,b)c,d) = (ac — db, bé + da) (a,b,c,d e H),
where the conjugate ¢ of a quaternion ¢ = a1 + xi + yj + zK is defined by
¢ =oal —xi— yj—zk,

so that the real part of cisRec = %(c + ¢) = al. A positive quaternion is one
of the form 1 for some « > 0. The basis elements of H x H are

eg=(1,0), e =10, e=((0), e =(k0),
e =(0,1), es=(0,i), e =1(0,j), e =(0,k).

The algebras C, H and O are quadratic; that is, each element x satisfies the
equation x> = ax + 1 for some @, B € R, where 1 denotes the identity of the
algebra. If x = (a;, a;) € H x H with

(2 Zanl‘l'xni"'.vnj"}'znk (n=12),
then we have
x% = 2000x — (x,2 + _V,z + Z% —|—x§ =+ ygz + Z%)é’o-

Example 1.1.5 A well-known example in Albert [2] of an exceptional Jordan
algebra is the 27-dimensional real algebra

H3(0) = {(aij)1<i,j<3 : (aij) = (@};), a;; € O}

of 3 x 3 matrices over O, Hermitian with respect to the usual involution ~ in
O defined by

(apeo + -+ - + a7e7) = apeg — - -+ — a7e7.

The Jordan product is given by

AoB = %(AB + BA) (A, B € H3(Q)),

where the multiplication on the right is the usual matrix multiplication. We
refer to Jacobson [62] and McCrimmon [88] for a more detailed analysis of
H3(Q0). The exceptionality of H3(Q) involves the so-called s-identities, which
are valid in all special Jordan algebras but not all Jordan algebras. One such
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identity was first found by Glennie [43]:
ZQX(Z)Q.\‘.X Q:(.VZ) - QO Q: Q.\'.y Qy(z)
=20,(2)0:y0:(x") — 0,0. 0, 0.:(2),

which does not hold in H3(@). An alternative proof of exceptionality bypassing
s-identities can be found in Hanche-Olsen and Stgrmer [47].

Definition 1.1.6 Anelement e in an algebra A is called an idempotent if e* = e.
Two idempotents e and u are said to be orthogonal if eu = ue = 0. An element
a € Ais called nilpotent if a" = 0 for some positive integer n.

Lemma 1.1.7 Let A be a unital Jordan algebra with an idempotent e. Let
a € A. The following conditions are equivalent:

(i) a and e operator commute.
(i) Q.(a)=L.a.

(iii) a and e generate an associative subalgebra of A.
Proof (i) = (ii). We have
Q.(a) = 2(L;Z — L,)a) = 2e(ea) — ea = 2¢’a — ea = ea.

(ii) = (iii). Let B be the subalgebra generated by a and e. By the Shirshov—
Cohn theorem, B is isomorphic to a Jordan subalgebra B’ of an associative
algebra (A’, x) with respect to the special Jordan product. Identify a and e as
elements in B'. Then

1
Leazi(exa—l—axe):Qe(a)zexaxe,

since e = > = e x e. Multiplying the above identity on the left by e, we get
e x a = e x a x e. Multiplying the identity on the right by e givesa x e = e x
a x e.Hencee x a =a x e and ea = e x a. Hence (B', x) is a commutative
subalgebra of (A, x) and the special Jordan product in B’ is just the product x
and is, in particular, associative.

(iii) = (i). In the proof of Theorem 1.1.1, we have the operator identity

[Le, Loe] +[Lp, Leel +[Ley Lenl =0
for all b, ¢ € A. Putting ¢ = ¢, we have

[(Les Lpe]l + [Lp, Lel + [Ley Lepl =0,
which gives

2[Le, Lpe] = [Le. Lp). (1.5)
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Since e? = e, in the special Jordan algebra A(a, e, 1) generated by a, e and 1,
it can be verified easily that

a = Qe(a) + Ql—e(a)

and Qy_.(a)e =0, as well as Q,(a)e = Q,(a). Substituting Q1_.(a) for b in
(1.5),we get[Le, Lo,_ )] = 0.Puttingb = Q,.(a)in (1.5) gives [L,, Lo, )] =
0. It follows that

[Lw La] = [Le~ LQ”(U)] i [Lev LQl,e(a)] =0. 0O

Lemma 1.1.8 Let A be a finite-dimensional associative algebra containing an
element a which is not nilpotent and not an identity. Then A contains a nonzero
idempotent, which is a polynomial in a, without constant term.

Proof We may assume that .4 has an identity 1. Finite dimensionality implies
that there is a nonzero polynomial p of least degree and without constant term,
such that p(a) = 0. Write p(x) = x*q(x), where k > 1 and g is a polynomial,
such that ¢(0) # 0. The degree degq of g is strictly positive, since a is not
nilpotent. There are then polynomials ¢, and g> with deg g, < degq and

¥ q1(x) + q(x)q(x) = 1,

where the nonzero polynomial g(x) = xkg,(x) has no constant term and
degg < deg p. Hence e = g(a) #0. We have e*> =e, since a*q(a) +
a*g>(a)g(a) = a* and

g(a)* — g(a) = a*qi(a)” — a*qi(a) = d* gx(a)g(a)gi(a) = 0.

Lemma 1.1.9 Let A be a Jordan algebra. Then an element a € A is nilpotent
if and only if the left multiplication L, : A —> A is nilpotent.

Proof Tf L, is nilpotent, then a"*! = L’ (a) implies that a is nilpotent. Con-
versely, forany a € A witha” = 0, we show that L, is nilpotent by induction on
the exponent n. The assertion is trivially true if n = 1. Given that the assertion
is true for n, we consider a"*! = 0. We have (a2)" = 0 = (a?)", and therefore
L, and L, are nilpotent, by the inductive hypothesis. It follows from the
identity

2L} =3L,2L, — Ly

that L, is nilpotent. O



