MoGraw-Hill Series on
Computer Engineering

LOGIC

| SYNTHESIS

Srinivas Devadas
Abhijit Ghosh
Kurt Keutzer

Logic Synthesis

Srinivas Devadas
Abhijit Ghosh
Kurt Keutzer

McGraw-Hill, Inc.

New York San Francisco Washington, D.C. Auckliand Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Devadas, Srinivas.
Logic synthesis / Srinivas Devadas, Abhijit Ghosh, Kurt Keutzer.
p. cm. — (McGraw-Hill series on computer engineering)
Includes bibliographical references and index.
ISBN 0-07-016500-9
1. Integrated circuits—Very large scale integration—Design—Data processing.
2. Logic design—Data processing. 3. Computer-aided design.
1. Ghosh, Abhijit. II. Keutzer, Kurt William. III. Title.
IV. Series: Series on computer engineering.
TK7874.D478 1994
621.39’5—dc20 93-41524
CIP

Copyright © 1994 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be repro-
duced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the
publisher.

234567890 DOC/DOC 909876

ISBN 0-07-016500-9

The sponsoring editor for this book was Stephen S. Chapman.
Printed and bound by R. R. Donnelley & Sons Company.

Information contained in this work has been obtained by
McGraw-Hill, Inc., from sources believed to be reliable.
However, neither McGraw-Hill nor its authors guarantee
the accuracy or completeness of any information pub-
lished herein, and neither McGraw-Hill nor its authors
shall be responsible for any errors, omissions, or damages
arising out of use of this information. This work is pub-
lished with the understanding that McGraw-Hill and its
authors are supplying information but are not attempting
to render engineering or other professional services. If
such services are required, the assistance of an appropri-
ate professional should be sought.

Logic Synthesis

Other Computer Engineering Books of Interest

PERRY » VHDL, Second Edition 0-07-049434-7

ROSENSTARK ¢ Transmission Lines in Computer Engineering
0-07-053953-7

PICK « VHDL Techniques, Experiments, and Caveats 0-07-049906-3

KIELKOWSKI « Inside SPICE 0-07-911525-X

MASSABRIO, ANTOGNETT! » Semiconductor Device Modeling with
SPICE, Second Edition 0-07-002469-3

DEWAR, SMOSNA « Microprocessors 0-07-016639-0

To order or receive additional information on these

or any other McGraw-Hill titles, in the United States

please call 1-800-822-8158. In other countries, contact

your local McGraw-Hill representative. BC14BCZ

Preface

The dramatic increase in designer productivity over the past
decade in the area of very large scale integrated (VLSI) circuit design
is the direct result of the development of sophisticated computer-aided
design (CAD) tools. Today, designers routinely describe the function-
ality of a circuit in a hardware description language (HDL) (which is
a high-level description akin to a programming language) and use
synthesis tools to produce optimized circuit layouts that can be sent
off to a chip manufacturer to be fabricated on a silicon integrated
circuit.

The two major areas in VLSI synthesis that have enabled
vastly improved design turnaround times are logic synthesis and lay-
out synthesis. The logic synthesis process consists of the translation
of the input HDL description into a gate-level circuit and the opti-
mization of the gate-level circuit. An optimized layout is produced
for the final gate-level circuit by the layout synthesis process. Both
the logic and layout synthesis process require the solution of difficult
combinatorial optimization problems. In this book we focus solely on
the logic synthesis process.

Switching and automata theory form the cornerstones of
logic synthesis. Combinatorial problems associated with optimizing
switching circuits abound in logic synthesis. In order to meet the
demands of the designers, logic optimization systems have to be ver-
satile and efficient. Versatility implies that the system should be able
to target a variety of design parameters such as circuit area, delay,
power dissipation, and testability. Efficiency implies that the system
should be able to produce near-optimum or at least acceptable results
for large VLSI circuits with reasonable CPU time expenditure.

The development of logic optimization systems that are ver-
satile and efficient posed one of the major challenges for CAD in the
1980s. Today, thanks to a large amount of research and develop-
mental effort such systems are in wide use among integrated circuit
designers. This book focuses on describing the basic principles of
logic design as well as the practical aspects of engineering a logic

xiii

xiv PREFACE

synthesis system.
Very few individuals will themselves undertake to implement
a logic synthesis system, but we feel that understanding the core
principles of logic synthesis will be of use to a number of communities.
One community consists of educators in computer science
and electrical engineering. In general an educator is looking for ma-
terial that both disciplines the intellect of the student as well as
prepares the student for practical problems the student is likely to
encounter. In particular, the modern educator searching to find ma-
terial that is relevant to the logical design of VLSI circuits has been
faced with choosing either the classical works on switching and au-
tomata theory or anthologies of collected articles on logic synthesis
and optimization methods. A large body of theory as well as many
practical algorithms and methodologies to design logic circuits have
been developed by researchers in logic synthesis, but so far theoretical
and practical results have only been documented in numerous arti-
cles. This book attempts to fill the gap between the classical books
written in the 1970s and modern logic optimization articles.
Another community consists of integrated circuit designers
who are presently using logic synthesis to design integrated circuits.
For these designers the former skills of handcrafting transistor-level
layout or manually entering the schematics of a carefully designed
gate-level implementation of a circuit are being replaced by the skill
of writing efficient HDL models of integrated circuits. In order to
develop the skill of writing HDL models of circuits that will result in
efficient implementations, it is necessary for a designer to understand
the basic principles underlying logic synthesis and optimization. One
of the recurrent obstacles for a hardware designer using synthesis is
the assumption that two functionally equivalent HDL models will
produce similar circuits after logic synthesis and optimization. While
we do not present a primer on HDL model development, it is our hope
that by making the designer understand the capabilities and limita-
tions of logic optimization software the designers will be able to build
more efficient circuits within a synthesis framework. It is our hope
that the discipline of logic synthesis will play just as central a role
to the training and education of circuit designers as the discipline of
compilers plays in the education and training of software developers.
A final community we wish to address are those fellow re-
searchers in CAD who are working in logic synthesis or a related area.
Research in logic synthesis is a very satisfying enterprise because im-
provements in algorithms can immediately translate into smaller or

PREFACE XV

faster circuits, and smaller and faster circuits have substantial com-
mercial impact. Researchers wishing to get up to speed in logic syn-
thesis have also been forced to rely on the classical works on switch-
ing and automata theory or on the anthologies of collected articles
on logic synthesis and optimization. Here we hope to provide these
researchers with a self-contained reference book that covers most of
the principal synthesis and optimization techniques.

This book is organized into ten chapters. We provide an
introduction to synthesis, verification, and testing in Chapter 1. The
translation of an HDL model into a netlist of gates is introduced in
Chapter 2. While integrated circuits implement sequential circuits,
the most successful logic synthesis and optimization techniques have
focused on the combinational portions. Therfore, in the remainder
of the book we focus on the combinational portions of the circuits.
The core algorithms for logic optimization were initially developed
on two-level circuits and most easily understood in that context. For
these reasons we will introduce these circuits first in Chapter 3. In the
following chapters, we deal with the problems of minimizing two-level
circuits so as to improve area and speed. We focus on testing a two-
level circuit under various models of faulty behavior. We show how
logic transformations applied to minimize the two-level circuit’s area
affect the testability of the circuit. While logic optimization tech-
niques were first developed on two-level circuits, multilevel circuits
are of much greater practical importance. In Chapters 6 through 9 we
deal with the problems of synthesizing multilevel combinational logic
circuits for minimal area, maximal speed, and high testability. Strong
relationships between the area, speed, and testability of a circuit are
highlighted throughout the book. We summarize the state-of-the-art
in logic synthesis in Chapter 10.

Circuit representations and data structures cut across all
facets of design such as synthesis, testing, and verification. At the
combinational or sequential circuit level, Boolean functions are ma-
nipulated in various ways. The search for more efficient represen-
tations of Boolean functions is ceaseless, mainly because discovering
such representations can have a significant impact on synthesis, test-
ing, and verification problems. In this book we describe commonly
used representations for combinational circuits and their advantages
and disadvantages when applied to particular problems in synthesis
and test.

Since we intend this book to be useful to CAD researchers,
educators, and VLSI designers, we have included considerable de-

xvi PREFACE

tail in the description of the various algorithms. Because we can-
not comprehensively present the full panorama of logic optimization
techniques, we present those techniques that have proven to be most
useful in practice.

A cknowledgements

Over the years, several people have helped to deepen our
understanding of VLSI synthesis, test generation, and synthesis for
testability. We thank Jonathan Allen, Pranav Ashar, Robert Bray-
ton, Michael Bryan, Gaetano Borriello, Raul Camposano, Steve Carl-
son, Tim Cheng, Aart De Geus, Giovanni De Micheli, Alfred Dunlop,
Gary Hachtel, Niraj Jha, Charles Leiserson, Michael Lightner, Bill
Lin, Tony Ma, Sharad Malik, Rick McGeer, Richard Newton, Paul
Penfield, Sudhakar Reddy, Richard Rudell, Alexander Saldanha, Al-
berto Sangiovanni-Vincentelli, Fabio Somenzi, Kanwar Jit Singh, Al-
bert Wang, Ruey-sing Wei, Jacob White, Tom Williams, and Wayne
Wolf.

Some of the problems in this book have been taken or mod-
ified from Robert Brayton's class notes. Material modified from a
variety of other sources is acknowledged by citations in the text.

Lastly, we thank Sulochana Devadas, Eliane Setton, Cate
Hunter, and the rest of our families for their continual patience and
encouragement.

xvil

Logic Synthesis

Contents

Preface xiii
Acknowledgements xvii
1 Introduction 1
1.1 Digital Integrated Circuits 2
1.2 1IC Design Methodology 2
1.3 Transistor-Level Layout 3
1.4 Gate-Level Entry 3
1.5 Initial Use of Logic Optimization 5
1.6 Emergence of Synthesis-Based Design 5
1.7 A Logic Synthesis Design Methodology 6
1.7.1 Behavioral Modeling 7

1.7.2 Register-Transfer Level Modeling 8

1.7.3 Two-level Logic Optimization 10

1.7.4 Multilevel Logic Optimization 10

1.7.5 Technology Mapping 11

1.7.6 Physical Design 11

1.8 Verification L. 12
1.8.1 Design Verification 12

1.8.2 Implementation Verification 13

1.9 Manufacture Testing 13
1.9.1 Fault Detection 14

1.9.2 Fault Models 14

1.10 Synthesis For Testability 16
1.11 OQutline 17
References, 18

2 Translation from HDL Descriptions 27
2.1 Introduction. 27
2.2 A Policy for Synthesis froma HDL 28
2.2.1 Description Style 28

2.2.2 Supported Language Constructs 29

vi

CONTENTS

2.3 Synthesis Examples from vHDL L. 29
2.3.1 Entities and Architectures 30
2.3.2 Bit Vectors and Sequential Statements 30
2.3.3 Arithmetic Operators 32
2.3.4 If-Then-Else Statements 33
2.3.5 Wait Statements 33
2.3.6 Parameterizable Circuits 35
2.3.7 Greatest Common Divisor Circuit 37

2.4 Dependence on Input Description Style 39
Problems 41
References 42

Two-Level Combinational Circuits 45

3.1 Introduction., 45

3.2 Terminology 46

3.3 Programmable Logic Arrays 50

3.4 Primality and Irredundancy Properties 51

3.5 Boolean Operations on Logic Functions 52

3.6 Operations on Cubes and Covers 52
3.6.1 Cube Intersection. 53
3.6.2 Disjoint SHARP 53
3.6.3 Single Cube Containment 54

3.7 Complexity of Two-Level Circuits 55
Problemso 55
References 57

Synthesis of Two-Level Circuits 59

4.1 Two-Level Boolean Minimization 59

4.2 The Quine-McCluskey Method 60
4.2.1 Prime Implicant Generation 60
4.2.2 Prime Implicant Table 61
4.2.3 Essential Prime Implicants 61
4.2.4 Dominated Columns 62
4.2.5 Dominating Rows 64
4.2.6 A Branching Covering Strategy 64

4.3 Two-Level Tautology 64
4.3.1 Unate Functions 65
4.3.2 Tautology Procedure 66
433 Example. . . . v v vt v i e h v e e s e 68

4.4 Complementation 69

4.4.1 Basic Procedure

CONTENTS vii

4.4.2 Special Cases, 71
4.4.3 Unate Complementation 71
444 Example. 72

4.5 Exact Minimization Methods 73
4.5.1 Prime Implicant Generation 74
4.5.2 Reduced Prime Implicant Table Generation . . 76
4.5.3 Branch-and-Bound Covering 79

4.6 Heuristic Minimization Methods 81
4.6.1 Heuristics Based on Exact Minimization 81
4.6.2 Heuristics Based on Iterative Improvement . . 81
4.6.3 ESPRESSO Minimization Loop 84
4.6.4 EXPAND, 85
4.6.5 IRREDUNDANT. 86
46.6 REDUCE 87
Problems 89
References 91

5 Testability of Two-Level Circuits 93
5.1 Introduction. 93
5.2 Fault Models 93
5.2.1 Single-Stuck-At Fault Model 94
5.2.2 Multiple-Stuck-At Fault Model 95
5.2.3 Bridging Fault Model 96
5.2.4 Gate Delay Fault Model 96
5.2.5 Transistor Stuck-Open Fault Model 97
5.2.6 Path Delay Fault Model 99
5.2.7 Complexity of Test Generation 99

5.3 Single Stuck-At Faults 100
5.3.1 Conditions for Testability 100
5.3.2 Synthesis for Full Testability 101
5.3.3 Test Generation Methods 103

5.4 Multiple Stuck-At Faults 104
5.4.1 Conditions for Testability 104
5.4.2 Synthesis for Full Testability 106
5.4.3 Test Generation Methods 107

5.5 Timing Analysis Terminology 107
5.6 Robust and Nonrobust Testing 109
5.6.1 Introduction 109
5.6.2 Hazard-Free Robust Path Delay Faults 109
5.6.3 General Robust Path Delay Faults 111

5.6.4 Hazard-Free Robust Gate Delay Faults. 112

viil

CONTENTS

5.6.5 General Robust Gate Delay Faults
5.6.6 Hazard-Free Robust Stuck-Open Faults .
5.7 Hazard-Free Robust Path Delay Faults
5.7.1 Conditions for Testability
5.7.2 Synthesis for Maximal Testability
5.7.3 Test Generation Methods
5.8 General Robust Path Delay Faults
5.9 Hazard-Free Robust Gate Delay Faults
5.9.1 Conditions for Testability
5.9.2 Synthesis for Maximal Testability
5.9.3 Test Generation Methods
5.10 Hazard-Free Robust Stuck-Open Faults
Problems: . « s o5 v o 5 5 5 95 5 5 5 5 6 % & 5 &
References

6 Multilevel Combinational Circuits
6.1 Boolean Networks
6.2 Special Classes of Circuits

6.2.1 Fan-out-Free Circuits
6.2.2 Leaf-DAG Circuits
6.2.3 Algebraically Factored Circuits
6.2.4 Multiplexor-Based Circuits
6.3 Binary Decision Diagrams

6.4 Ordered Binary Decision Diagrams

6.4.1 Reduced Ordered Binary Decision Diagrams .

6.4.2 Canonicity Property
6.4.3 Reduction
6.4.4 Complementation.
6.4.5 Cofactor
6.4.6 APPLY
6.4.7 Circuit Equivalence using ROBDDs
6.4.8 Ordering Heuristics.
6.4.9 Improvements to ROBDDs
6.4.10 Multiplexor-Based Networks
Problems
References

7 Synthesis of Multilevel Circuits
7.1 Logic Transformations

7.1.1
7.1.2

Decomposition
Extraction.

114
115
115
117
121
122
123
123
124
125
125
126
127

129
129
130
130
130
131
131
131
132

. 134

136
137
138
138
139
141
143
144
146
147
148

CONTENTS

7.2
7.3

7.4

7.5
7.6

7.7

7.8

ix

7.1.3 Factoring 153
7.1.4 Substitution, 154
7.1.5 Elimination 154
Division and Common Divisors 155
Algebraic Division 156
7.3.1 Computing the Quotient 156
7.3.2 Kernels and Algebraic Divisors 157
7.3.3 Computing the Kernels 158
7.3.4 Factoring Algorithm 161
7.3.5 Extraction and Resubstitution Algorithm 162
7.3.6 Algebraic Resubstitution with Complement . . 163
Rectangles and Rectangle Covering 163
7.4.1 Definitions 164
7.4.2 Rectangles and Kernels 165
7.4.3 Common-Cube Extraction. 166
7.4.4 Kernel Intersection 168
7.4.5 Rectangle Algorithms 171
Boolean Division 176
Don’t-Care-Based Optimization 177
7.6.1 Satisfiability Don’t-Cares 178
7.6.2 Observability Don’t-Cares 179
7.6.3 Don’t-Care Generation 180
7.6.4 ROBDD implementation. s on 182
7.6.5 Range Computation 182
Technology Mapping 185
7.7.1 Introduction 185
7.7.2 Technology Libraries 186
7.73 Cost Models 187
7.7.4 Graph Covering 188
7.7.5 Choice of Atomic Pattern Set 189
Technology Mapping by Tree Covering 190
7.8.1 Tree Covering Approximation 190
7.8.2 Partitioning the Subject Graph 191
7.8.3 Technology Decomposition 192
7.8.4 Tree Matching Techniques 192
7.8.5 Optimal Tree Covering 193
7.8.6 Inverter-Pair Heuristic 195
7.8.7 Extension to Nontree Patterns 196
7.8.8 Delay Optimization 197
7.8.9 Conclusions, 198
7.9 Field Programmable Gate Arrays 198

X CONTENTS
7.9.1 FPGA Architectures 199
7.9.2 FPGA Terminology 201
7.9.3 FPGA Logic Block Architectures 202
7.9.4 FPGA Routing Architecture 206

7.10 FPGA Synthesis Methods 209
7.10.1 Lookup-Table-Based Architectures 210
7.10.2 Multiplexor-Based Architectures 213
Problems 215
References 219

8 Delay of Multilevel Circuits 225

8.1 Component and Circuit Delay 225
8.1.1 Component Delay Calculation. 226
8.1.2 Circuit Delay Calculation 227

8.2 Timing Analysis and Verification 229
8.2.1 Topological Timing Analysis 229
8.2.2 False Paths in an Adder 231
8.2.3 Delay Models and Modes of Operation 232
8.2.4 Transition Mode and Monotone Speedup . . . 233
8.2.5 Floating Mode and Monotone Speedup 236
8.2.6 Static Sensitization 237
8.2.7 Static Cosensitization 239
8.2.8 True Floating Mode Delay 240

8.3 Floating Mode Delay Computation 244
8.3.1 The PODEM Algorithm 245
8.3.2 Cube Simulation 248
8.3.3 Timed Test Generation 252
8.3.4 Backtrace 255

8.4 Technology-Independent Optimization 256
8.4.1 Circuit Restructuring 256

8.5 The Speedup Algorithm 257
8.5.1 Definitions 258
8.5.2 Outline of the Algorithm 259
8.5.3 Weight of the Critical Nodes 260
8.5.4 Minimum Weighted Cutset 261
8.5.5 Partial Collapsing 262
8.5.6 Timing Decomposition 262
8.5.7 Kernel-Based Decomposition 263
8.5.8 AND-OR Decomposition 264
8.5.9 Controlling the Algorithm 267

8.6 Technology Mapping for Delay 268

