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Preface

The dramatic increase in designer productivity over the past
decade in the area of very large scale integrated (VLSI) circuit design
is the direct result of the development of sophisticated computer-aided
design (CAD) tools. Today, designers routinely describe the function-
ality of a circuit in a hardware description language (HDL) (which is
a high-level description akin to a programming language) and use
synthesis tools to produce optimized circuit layouts that can be sent
off to a chip manufacturer to be fabricated on a silicon integrated
circuit.

The two major areas in VLSI synthesis that have enabled
vastly improved design turnaround times are logic synthesis and lay-
out synthesis. The logic synthesis process consists of the translation
of the input HDL description into a gate-level circuit and the opti-
mization of the gate-level circuit. An optimized layout is produced
for the final gate-level circuit by the layout synthesis process. Both
the logic and layout synthesis process require the solution of difficult
combinatorial optimization problems. In this book we focus solely on
the logic synthesis process.

Switching and automata theory form the cornerstones of
logic synthesis. Combinatorial problems associated with optimizing
switching circuits abound in logic synthesis. In order to meet the
demands of the designers, logic optimization systems have to be ver-
satile and efficient. Versatility implies that the system should be able
to target a variety of design parameters such as circuit area, delay,
power dissipation, and testability. Efficiency implies that the system
should be able to produce near-optimum or at least acceptable results
for large VLSI circuits with reasonable CPU time expenditure.

The development of logic optimization systems that are ver-
satile and efficient posed one of the major challenges for CAD in the
1980s. Today, thanks to a large amount of research and develop-
mental effort such systems are in wide use among integrated circuit
designers. This book focuses on describing the basic principles of
logic design as well as the practical aspects of engineering a logic

xiii
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synthesis system.
Very few individuals will themselves undertake to implement
a logic synthesis system, but we feel that understanding the core
principles of logic synthesis will be of use to a number of communities.
One community consists of educators in computer science
and electrical engineering. In general an educator is looking for ma-
terial that both disciplines the intellect of the student as well as
prepares the student for practical problems the student is likely to
encounter. In particular, the modern educator searching to find ma-
terial that is relevant to the logical design of VLSI circuits has been
faced with choosing either the classical works on switching and au-
tomata theory or anthologies of collected articles on logic synthesis
and optimization methods. A large body of theory as well as many
practical algorithms and methodologies to design logic circuits have
been developed by researchers in logic synthesis, but so far theoretical
and practical results have only been documented in numerous arti-
cles. This book attempts to fill the gap between the classical books
written in the 1970s and modern logic optimization articles.
Another community consists of integrated circuit designers
who are presently using logic synthesis to design integrated circuits.
For these designers the former skills of handcrafting transistor-level
layout or manually entering the schematics of a carefully designed
gate-level implementation of a circuit are being replaced by the skill
of writing efficient HDL models of integrated circuits. In order to
develop the skill of writing HDL models of circuits that will result in
efficient implementations, it is necessary for a designer to understand
the basic principles underlying logic synthesis and optimization. One
of the recurrent obstacles for a hardware designer using synthesis is
the assumption that two functionally equivalent HDL models will
produce similar circuits after logic synthesis and optimization. While
we do not present a primer on HDL model development, it is our hope
that by making the designer understand the capabilities and limita-
tions of logic optimization software the designers will be able to build
more efficient circuits within a synthesis framework. It is our hope
that the discipline of logic synthesis will play just as central a role
to the training and education of circuit designers as the discipline of
compilers plays in the education and training of software developers.
A final community we wish to address are those fellow re-
searchers in CAD who are working in logic synthesis or a related area.
Research in logic synthesis is a very satisfying enterprise because im-
provements in algorithms can immediately translate into smaller or
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faster circuits, and smaller and faster circuits have substantial com-
mercial impact. Researchers wishing to get up to speed in logic syn-
thesis have also been forced to rely on the classical works on switch-
ing and automata theory or on the anthologies of collected articles
on logic synthesis and optimization. Here we hope to provide these
researchers with a self-contained reference book that covers most of
the principal synthesis and optimization techniques.

This book is organized into ten chapters. We provide an
introduction to synthesis, verification, and testing in Chapter 1. The
translation of an HDL model into a netlist of gates is introduced in
Chapter 2. While integrated circuits implement sequential circuits,
the most successful logic synthesis and optimization techniques have
focused on the combinational portions. Therfore, in the remainder
of the book we focus on the combinational portions of the circuits.
The core algorithms for logic optimization were initially developed
on two-level circuits and most easily understood in that context. For
these reasons we will introduce these circuits first in Chapter 3. In the
following chapters, we deal with the problems of minimizing two-level
circuits so as to improve area and speed. We focus on testing a two-
level circuit under various models of faulty behavior. We show how
logic transformations applied to minimize the two-level circuit’s area
affect the testability of the circuit. While logic optimization tech-
niques were first developed on two-level circuits, multilevel circuits
are of much greater practical importance. In Chapters 6 through 9 we
deal with the problems of synthesizing multilevel combinational logic
circuits for minimal area, maximal speed, and high testability. Strong
relationships between the area, speed, and testability of a circuit are
highlighted throughout the book. We summarize the state-of-the-art
in logic synthesis in Chapter 10.

Circuit representations and data structures cut across all
facets of design such as synthesis, testing, and verification. At the
combinational or sequential circuit level, Boolean functions are ma-
nipulated in various ways. The search for more efficient represen-
tations of Boolean functions is ceaseless, mainly because discovering
such representations can have a significant impact on synthesis, test-
ing, and verification problems. In this book we describe commonly
used representations for combinational circuits and their advantages
and disadvantages when applied to particular problems in synthesis
and test.

Since we intend this book to be useful to CAD researchers,
educators, and VLSI designers, we have included considerable de-
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tail in the description of the various algorithms. Because we can-
not comprehensively present the full panorama of logic optimization
techniques, we present those techniques that have proven to be most
useful in practice.
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