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Preface

This book contains five invited expository articles resulting from the workshop
“Large-Scale Inverse Problems and Applications in the Earth Sciences” which took
place from October 24th to October 28th, 2011, at the Johann Radon Institute for
Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences at
the Johannes Kepler University in Linz, Austria. This workshop was part of a special
semester at the RICAM devoted to “Multiscale Simulation and Analysis in Energy and
the Environment” which took place from October 3rd to December 16th, 2011. The
special semester was designed around four workshops with the ambition to invoke
interdisciplinary cooperation between engineers, hydrologists, meteorologists, and
mathematicians.

The workshop on which this collection of articles is based was devoted more
specifically to establishing ties between specialists engaged in research involving
real-world applications, e.g. in meteorology, hydrology and geosciences, and experts
in the theoretical background such as statisticians and mathematicians working on
Bayesian inference, inverse problem and control theory.

The two central problems discussed at the workshop were the processing and
handling of large scale data and models in earth sciences, and the efficient extraction
of the relevant information from them. For instance, weather forecasting models in-
volve hundreds of millions of degrees of freedom and the available data easily exceed
millions of measurements per day. Since it is of no practical use to predict tomor-
row’s weather from today’s data by a process that takes a couple of days, the need
for efficient and fast methods to manage large amounts of data is obvious. The sec-
ond crucial aspect is the extraction of information (in a broad sense) from these data.
Since this information is often “hidden” or perhaps only accessible by indirect mea-
surements, it takes special mathematical methods to distill and process it. A general
mathematical methodology that is useful in this situation is that of inverse problems
and regularization and, closely related, that of Bayesian inference. These two paths
of information extraction can very roughly be distinguished by the fact that in the
former, the information is usually considered a deterministic quantity, while in the
latter, it is treated as a stochastic one.

A loose arrangement of the articles in this book follows this structuring of infor-
mation extraction paradigms; all in view of large scale data and real-world applica-
tions:

e Aspects of inverse problems, regularization and data assimilation. The article by
Freitag and Potthast provides a general theoretical framework for data assimilation,
a special type of inverse problem and puts the theory of inverse problems in context,
providing similarities and differences between general inverse problems and data as-
similation problems. Lawless discusses state-of-the-art methodologies for data assim-
ilation as a state estimation problem in current real-world applications, with partic-
ular emphasis on meteorology. In both cases, the need to treat spatial and temporal
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correlations effectively makes the application somewhat different from many other
applications of inverse problems.

e Aspects of inverse problems and Bayesian inference. The survey paper by Reich
and Cotter gives an introduction to mathematical tools for data assimilation coming
from Bayesian inference. In particular, ensemble filter techniques and Monte Carlo
methods are discussed. In this case, the need to incorporate spatial and temporal
correlations makes cost-effective implementation very challenging.

e Aspects of inverse problems and regularization in imaging applications. The article
by Burger, Dirks and Miiller is an overview of the process of acquiring, processing, and
interpretation of data and the associated mathematical models in imaging sciences.
While this article highlights the benefits of the nowadays very popular nonlinear (I -
based) regularizations, the article by van den Doel, Ascher and Haber complements
the picture by contrasting these benefits with the draw-backs of [, -based approaches
and by attempting to somewhat restore the “lost honor” of the more traditional and
effective, linear l,-type regularizations.

The review-type articles in this book contain basic material as well as many interest-
ing aspects of inverse problems, regularization and data assimilation, with the provi-
sion of excellent and extensive references to the current literature. Hence, it should be
of interest to both graduate students and researchers, and a valuable reference point
for both practitioners and theoretical scientists.

We would like to thank the authors of these articles for their commendable con-
tributions to this book. Without their time and commitment, the production of this
book would not have been possible. We would also like to thank Nathan Smith (Uni-
versity of Bath) and Peter Jan van Leeuwen (University of Reading) who helped review
the articles. Additionally, we would like to express our gratitude to the speakers and
participants of the workshop, who contributed to a successful workshop in Linz.

Moreover, we would like to thank Prof. Heinz Engl, founder and former director
of RICAM, and Prof. Ulrich Langer, former director of RICAM for their hospitality and
for giving us the opportunity to organize this workshop at the RICAM. In addition,
we would like to acknowledge the work of the administrative and computer support
team at RICAM, Susanne Dujardin, Annette Weihs, Wolfgang Forsthuber and Florian
Tischler, as well as the local scientific organizers Jérg Willems, Johannes Kraus and
Erwin Karer. The special semester, the workshops and this book would not have been
possible without their efforts.

More information on the special semester and the four workshops can be found at
http://www.ricam.oeaw.ac.at/specsem/specsem2011/.

Exeter Mike Cullen
Bath Melina A. Freitag
Linz Stefan Kindermann

Bath Robert Scheichl
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Melina A. Freitag and Roland W. E. Potthast
Synergy of inverse problems and data
assimilation techniques

Abstract: This review article aims to provide a theoretical framework for data assimila-
tion, a specific type of an inverse problem arising, for example, in numerical weather
prediction, hydrology and geology.

We consider the general mathematical theory for inverse problems and regular-
ization, before we treat Tikhonov regularization, as one of the most popular meth-
ods for solving inverse problems. We show that data assimilation techniques such
as three-dimensional and four-dimensional variational data assimilation (3DVar and
4DVar) as well as the Kalman filter and Bayes’ data assimilation are, in the linear case,
a form of cycled Tikhonov regularization. We give an introduction to key data assimi-
lation methods as currently used in practice, link them and show their similarities. We
also give an overview of ensemble methods. Furthermore, we provide an error analysis
for the data assimilation process in general, show research problems and give numer-
ical examples for simple data assimilation problems. An extensive list of references is
given for further reading.

Keywords: Inverse problems, ill-posedness, regularization theory, Tikhonov regular-
ization, error analysis, 3DVar, 4DVar, Bayesian perspective, Kalman filter, Kalman
smoother, ensemble methods, advection diffusion equation, Lorenz-95 system
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1 Introduction

Inverse problems appear in many applications and have received a great deal of atten-
tion from applied mathematicians, engineers and statisticians. They occur, for exam-
ple, in geophysics, medical imaging (such as ultrasound, computerized tomography
and electrical impedance tomography), computer vision, machine learning, statisti-
cal inference, geology, hydrology, atmospheric dynamics and many other important
areas of physics and industrial mathematics.

This article aims to provide a theoretical framework for data assimilation, a spe-
cific inverse problem arising, for example, in numerical weather prediction (NWP)
and hydrology [48, 57, 58, 70, 83]. A few introductory articles on data assimilation
in the atmospheric and ocean sciences are available, mainly from the engineering
and meteorological point of view, for example, [20, 44, 48, 51, 63, 66, 71]. However,
a comprehensive mathematical analysis in light of the theory of the inverse problem
is missing. This expository article aims to achieve this.

An inverse problem is a problem which is posed in a way that is inverse to most
direct problems. The so-called direct problem we have in mind is that of determining
the effect f from given causes and conditions o when a definite physical or mathe-
matical model H in form of a relation

H(p)=f 1.1)

is given. In general, the operator H is nonlinear and describes the governing equa-
tions that relate the model parameters to the observed data. Hence, in an inverse
problem, we are looking for @, that is, a special cause, state, parameter or condi-
tion of a mathematical model. The solution of an inverse problem can be described
as the construction of @ from data f (see, for example, [22, 49]). We now consider
the specific inverse problem arising in data assimilation which usually also contains
a dynamic aspect.

Data assimilation is, loosely speaking, a method for combining observations of
the state of a complex system with predictions from a computer model output of that
same state where both the observations and the model output data contain errors
and (in case of the observations) are often incomplete. The task in data assimilation
(and hence the inverse problem) is seeking the best state estimate with the available
information about the physical model and observations.

Let X be the state space. For the remainder of this article, we generally assume
that X (and also Y) are Hilbert spaces unless otherwise stated. Let ¢ € X, where @
is the state (of the atmosphere, for example), that is, a vector containing all state vari-
ables. Furthermore, let @y € X be the state at time t; and My : X — X the (generally
nonlinear) model operator at time t; which describes the evolution of the states from
time £y to time ty41, thatis, @g+1 = Mg (@yg). For the moment, we consider a perfect
model, that is, the true system dynamics are assumed to be known. We also use the
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notation
My = Mg-1Mi_2 - - - Mg 1 Mg, k> 4¥ €N, (1.2)

to describe the evolution of the system dynamics from time ty to time .

Let Y be the observation space at time tx and f; € Yk be the observation vector,
collecting all the observations at time t. Finally, let Hy : X — Yi be the (generally
nonlinear) observation operator at time tj, mapping variables in the state space to
variables in the observation space. The data assimilation problem can then be defined
as follows.

Definition 1.1 (Data assimilation problem). Given observations fy € Y at time fy,
determine the states gy € X from the operator equations

Hy (@x) = fx, k=0,1,2,... (1.3)

subject to the model dynamics My : X — X given by @41 = My (@g), where k =
0,1,2,; 5000

In numerical weather prediction, the operator My involves the solution of a time-
dependent nonlinear partial differential equation. Usually, the observation opera-
tor Hy is dynamic, that is, it changes at every time step. However, for simplicity, we
often let Hy := H. Both the operator Hy and the data f} contain errors. Also, in prac-
tice, the dynamical model My involves errors, that is, My does not represent the true
system dynamics because of model errors. For a detailed account on errors occurring
in the data assimilation problem, we refer to Section 4. Moreover, the model dynamics
represented by the nonlinear operators My are usually chaotic. In the context of data
assimilation, additional information might be given through known prior information
(background information) about the state variable denoted by @ ,(cb) € X.

The operator equation (1.3) (see also (1.1)) is usually ill-posed, that is, at least
one of the following well-posedness conditions according to Hadamard [33] is not
satisfied.

Definition 1.2 (Well-Posedness [49, 82]). Let X, Y be normed spacesand H : X — Y

be a nonlinear mapping. Then, the operator equation H(¢g) = f from (1.1) is called

well-posed if the following holds:

e Existence: For every f € Y, there exists at least one @ € X such that H(@) = f,
that is, the operator H is surjective.

e Uniqueness: The solution @ from H (@) = f is unique, that is, the operator H is
injective.

e Stability: The solution @ depends continuously on the data f, that is, it is stable
with respect to perturbations in f.

Equation (1.1) is ill-posed if it is not well-posed.
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Note that for a general nonlinear operator H, both the existence and uniqueness
of the operator equation need not be satisfied. If the existence condition in Defini-
tion 1.2 is not satisfied, then it is possible that f € R (H). However, for a perturbed
right-hand side f?, we have f° ¢ R(H), where R(H) = {f €Y, f = H(@), @ €
X} is the range of H. Existence of a generalized solution can sometimes (for instance,
in the finite-dimensional case) be ensured by solving the minimization problem

min ||f - H(@)|l , (1.4)

which is equivalent to (1.1) if f € R(H). The norm || - ||y is a generic norm in Y. The
second condition in Definition 1.2 implies that an inverse operator H™! : R(H) <
Y — X with H 1(f) = @ exists. If the uniqueness condition is not satisfied, then it is
possible to ensure uniqueness by looking for special solutions, for example, solutions
that are closest to a reference element @* € X, or, solutions with a minimum norm.
Hence, at least in the linear case, uniqueness can be ensured if

[|f = H(@uni)|ly =gleig}llf—H(09)lly, 1.5)

where ||@uni — @*llx = min{|l¢ — @*|lx,® € X, @ isa minimizer in (1.5)}. The
third condition in Definition 1.2 implies that the inverse operator H™! : R(H) € Y —
X is continuous. Usually, this problem is the most severe one as small perturbations
in the right-hand side f € Y lead to large errors in the solution @ € X and the
problem needs to be regularized. We will look at this aspect in Section 2.

From the above discussion, it follows that the operator equation (1.3) is well-
posed if the operator Hy is bijective and has a well-defined inverse operator H; 1
which is continuous. A least squares solution can be found by solving the minimiza-
tion problem

min || fi — He(@o)||y . k=0,1,2,.... (1.6)
@PrEX

We can solve (1.6) at every time step k, which is a sequential data assimilation prob-
lem. If we include the nonlinear model dynamics constraint My : X — X given by
@ik+1 = Mi(@y), over the time steps tx, k = 0,..., K, and take the sum of the least
squares problem in every time step, the minimization problem becomes

K K
. B . 2
min - H = min — HyM ; 1.7
q)kexg()”fk k(@) |y @oexgo“f" kMy.0(@o) ||y 1.7)
where My o denotes the evolution of the model operator from time t to time fy, that
is, Mo = My_1Mg_> - - - Mp, using the system dynamics (1.2), and My, = I. Both
the sequential data assimilation system (1.6) and the data assimilation system (1.7)
can be written in the form

gleig}HT—H(m)Hi, (1.8)
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with an appropriate operator H. Problem (1.8) is equivalent to H(p) = f (cf._(l.l)) if
f € R(H). For the sequential assimilation system (1.6), we have H := Hy, f = fi
and @ := @y ateverystep k = 0, 1,.... For the system (1.7), we have @ := @y,

Hp fo
H1M S
HZMZ.O and 7;: f2

|
o

| Hk Mk o | | fk |

In general, H is a nonlinear operator since both the model dynamics M and the ob-
servation operators Hy, are nonlinear. If the equation H(¢) = f is well-posed, then
H has a well-defined continuous inverse operator H ' and R(H) = Y.

Now, if H is a linear operator in Banach spaces, then well-posedness follows from
the first two conditions in Definition 1.2, which are equivalent to R(H) = Y and
N (H) = {0} where N (H) is the null space of H. Moreover, if H is a linear operator
on a finite-dimensional Hilbert space (in particular, if R (H) is of finite dimension),
then the stability condition in Definition 1.2 holds automatically and well-posedness
follows from either one of the first two conditions in 1.2. (The last condition in Def-
inition 1.2 follows from the compactness of the unit ball in finite dimensions [49].)
For linear H, the uniqueness condition N (H) = {0} is clearly satisfied if the observ-
ability matrix H has full row rank. In this case, the system is observable, that is, it is
possible to determine the behavior of the entire system from the systems output, see
[47,73].

The remaining question is the stability of the (injective) operator equation
H(p) = f (or Hp = H(p) = f, a notation which we are going to use from now on)
for a compact linear operator H : X — Y in infinite dimensions. As a compact linear
operator is always ill-posed in an infinite-dimensional space (as R (H) is not closed),
we need some form of regularization.

Note that the discretization of an infinite-dimensional unstable ill-posed problem
naturally leads to a finite-dimensional problem which is well-posed, that is, accord-
ing to Definition 1.2. However, the discrete problem will be ill-conditioned, that is,
an error in the input data will still lead to large errors in the solution. Hence, some
form of regularization is also needed for finite-dimensional problems arising from
infinite-dimensional ill-posed operators.

In the following, we consider compact linear operators H for which a singular
value decomposition exists (see, for example, [49]).

Lemma 1.3 (Singular system of compact linear operators). Let H : X — Y be a com-
pact linear operator. Then, there exist sets of indices ] = {1,...,m} fordim(R(H)) =
mand J = N for dim(R(H)) = oo, orthonormal systems {1} jc; in X and {v;}c;
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in Y and a sequence {0} je; of positive real numbers with the following properties:
{0} jes isnon-increasing and limo; =0 forJ =N, (1.9)
JAOO
Huj=ojvj, (jeJ) and H*v;=ojuj, (jJeE]). (1.10)

For all p € X, there exists an element o € N (H) with

=0+ 3 (pou) u ad Ho= 3 op (@) vy A1)
JEJ JjeJ
Furthermore,
H*f = 3 05 {f.vs), u; (112)
JEJ

holds for all f € Y. The countable set of triples {0, uj, v;}je; is called a singular
system, {0} je are called singular values, {u ;} jej are right singular vectors and form
an orthonormal basis for N (H)* and {v,} je; are left singular vectors and form an or-
thonormal basis for R (H).

In the following, we mostly consider compact linear operators, although the con-
cept of ill-posedness can be extended to nonlinear operators [23, 40, 49, 82] by consid-
ering linearizations of the nonlinear problem using, for example, the Fréchet deriva-
tive of the nonlinear operator. One can show that for compact nonlinear operators,
the Fréchet derivative is compact as well, leading to the concept of locally ill-posed
problems for nonlinear operator equations. For solving nonlinear problems compu-
tationally, usually some form of linearization is required. Hence, most of our results
for linear problems can be extended to the case of iterative solutions to nonlinear
problems (where a linear problem needs to be solved at each iteration).

2 Regularization theory

Problems of the form Hp = f with a compact operator H are ill-posed in infinite di-
mensions since the inverse of H is not uniformly bounded. However, in order to solve
He = f (or, for f ¢ R(H), its equivalent minimization problem min ||[Hp — f||?),
regularization is needed.
Let H : X — Y and denote its adjoint operator by H* : Y — X. Furthermore, let
@ be the unique solution to the least squares minimization problem min | Hp — f|2.
Then, the solution to the minimization problem is equivalent to the solution of the
normal equations
H*Hp =H*f. (1.13)

Clearly, if H : X — Y is compact, then H*H is compact and the normal equations
(1.13) remain ill-posed. However, if we replace (1.13) by

(ol + H*H) o = @y + H*Hpy = H* f (1.14)



