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Preface

For most students, the first and often only course in college mathematics
is calculus. It is true that calculus is the single most important field of
mathematics, whose emergence in the seventeenth century signaled the
birth of modern mathematics and was the key to the successful applications
of mathematics in the sciences and engineering.

But calculus (or analysis) is also very technical. It takes a lot of work
even to introduce its fundamental notions like continuity and the derivative
(after all, it took two centuries just to develop the proper definition of these
notions). To get a feeling for the power of its methods, say by describing
one of its important applications in detail, takes years of study.

If you want to become a mathematician, computer scientist, or engineer,
this investment is necessary. But if your goal is to develop a feeling for what
mathematics is all about, where mathematical methods can be helpful, and
what kinds of questions do mathematicians work on, you may want to look
for the answer in some other fields of mathematics.

There are many success stories of applied mathematics outside calculus.
A recent hot topic is mathematical cryptography, which is based on number
theory (the study of the positive integers 1,2,3,...), and is widely applied,
for example, in computer security and electronic banking. Other important
areas in applied mathematics are linear programming, coding theory, and
the theory of computing. The mathematical content in these applications
is collectively called discrete mathematics. (The word “discrete” is used in
the sense of “separated from each other,” the opposite of “continuous;” it is
also often used in the more restrictive sense of “finite.” The more everyday
version of this word, meaning “circumspect,” is spelled “discreet.”)



vi Preface

The aim of this book is not to cover “discrete mathewatics” in depth
(it should be clear from the description above that such a task would be
ill-defined and impossible anyway). Rather, we discuss a number of selected
results and methods, mostly from the areas of combinatories and graph the-
ory, with a little elementary wunber theory, probability, and combinatorial
geometry.

It is important to realize that there is no mathematics without proofs.
Merely stating the facts, without saying something about why these facts
are valid, would be terribly far from the spirit of mathematics and would
make it impossible to give any idea about how it works. Thus, wherever
possible, we will give the proofs of the theorems we state. Sometimes this
is not possible; quite simple, elementary facts can be extrewely difficult to
prove, and sowme such proofs may take advanced courses to go through. In
these cases, we will at least state that the proof is highly technical and goes
beyond the scope of this book.

Another important ingredient of mathematics is problem solving. You
won’t be able to learn any mathematics without dirtying your hands and
trying out the ideas you learn about in the solution of problems. To some,
this may sound frightening, but iu fact. most people pursue this type of
activity almost every day: Everybody who plays a game of chess or solves |
a puzzle is solving discrete mathematical problems. The reader is strongly
advised to answer the questions posed in the text and to go through the
problems at the end of each chapter of this book. Treat it as puzzle solving,
and if you find that some idea that you came up with in the solution plays
some role later, be satisfied that you are heginning to get the essence of
how mathematics develops.

We hope that we can illustrate that mathematics is a building, where
results are built on earlier results, often going back to the great Greek
mathematicians; that mathematics is alive, with more new ideas and more
pressing unsolved problems than ever; and that mathematics is also an art,
where the beauty of ideas and methods is as important as their difficulty
or applicability.

Laszlé Lovasz Jézsef Pelikdan Katalin Vesztergombi
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1
Let’s Count!

1.1 A Party

Alice invites six guests to her birthday party: Bob, Carl, Diane, Eve, Frank,
and George. When they arrive, they shake hands with each other (strange
European custom). This group is strange anyway, because one of them asks,
“How many handshakes does this mean?”

“I shook 6 hands altogether,” says Bob, “and I guess, so did everybody
else.”

“Since there are seven of us, this should mean 7 - 6 = 42 handshakes,”
ventures Carl.

“This seems too many” says Diane. “The same logic gives 2 handshakes
if two persons meet, which is clearly wrong.” .

“This is exactly the point: Every handshake was counted twice. We have
to divide 42 by 2 to get the right number: 21,” with which Eve settles the
issue.

When they go to the table, they have a difference of opinion about who
should sit where. To resolve this issue, Alice suggests, “Let’s change the
seating every half hour, until we get every seating.”

“But you stay at the head of the table,” says George, “since it is your
birthday.”

How long is this party going to last? How many different seatings are
there (with Alice’s place fixed)?

Let us fill the seats one by one, starting with the chair on Alice’s right.
Here we can put any of the 6 guests. Now look at the second chair. If Bob
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sits‘in the first chair, we can put any of the remaining 5 guests in the second
chair: if Carl sits in the first chair, we again have 5 choices for the second
chair, etc.. Each of the six choices for the first chair gives us five choices
for the second chair, so the mumber of ways to fill the first two chairs is
54+54+5+5+5+5=06-5=30. Similarly. no matter how we fill the first
two chairs, we have 4 choices for the third chaiv, whiclh gives 6 -5 - 4 ways
to fill the first three chairs. Proceeding similavly, we find that the number
of ways to seat the guests is 6-5-4-3-2-1 = T720.

It they change seats every half hour, it will take 360 hours, that is, 15
days, to go through all the scating arrangeunients. Quite a party, at least as
far as the duration goes!

1.1.1 How many ways can these people he seated at the table if Alice, too, can
sit anywhere?

After the cake, the crowd wants to dance (boys with girls, remember,
this is a conservative Ewropean party). How many possible pairs can be
formed?

OK, this is easy: there are 3 girls. and cach can choose one of 4 boys,
this makes 3 - 4 = 12 possible pairs.

After ten days have passed, our friends really need some new ideas to
keep the party going. Frank has one: “Let’s pool our resources and win the
lottery! All we have to do is to buy enough tickets so that no matter what
they draw, we will have a ticket with the winning numbers. How many
tickets do we need for this?”

(In the lottery they are talking about, 5 nmmbers are selected out of 90.)

“This is like the seating,” says George. “Suppose we fill out the tickets S0
that Alice marks a number, then she passes the ticket to Bob, who marks
a number and passes it to Carl, and so on. Alice has 90 choices, and no
matter what she chooses, Bob has 89 choices, so there are 90 - 89 choices
for the first two numbers, and going on similarly, we get 90 - 89 - 88 - 87 - 86
possible choices for the five numbers.”

“Actually, I think this is more like the handshake question,” says Alice.
“If we fill out the tickets the way you suggested, we get the same ticket
more then once. For example, there will be a ticket where I mark 7 and
Bob marks 23, -and another one where I mark 23 and Bob marks 7.7

Carl jumps up: “Well, let’s imagine a ticket, say, with numbers
7,23,31,34, and 55. How many ways do we get it? Alice could have marked
any of them; no matter which one it was that she marked, Bob could have
marked any of the remaining four. Now this is really like the seating prob-
lem. We get every ticket 5-4-3-2-1 times.”

“So,” concludes Diane, it we fill out the tickets the way George proposed,
then among the 90 -89 - 83 - 87 - 306 tickets we get, every 5-tuple occurs not
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only once, but 5-4-3-2-1 times. So the munber of different tickets is only

We only need to buy this nmuber of tickets.”

Somebody with a good pocket calculator computed this value in a twin-
kling; it was 43,949.268. So they had to decide (remnember. this happens in
a poor Europeau country) that they didu't have enough money to buy so
many tickets. (Besides, they would win numich less. And to fill out so many
tickets would spoil the party!)

So they decide to play cards instead. Alice, Bob, Carl and Diane play
bridge. Looking at his cards, Carl says, “I think I had the same hand last
time.”

“That is very unlikely” says Diane.

How unlikely is it? In other words, how many different hands can you
have in bridge? (The deck has 52 cards, each player gets 13.) We hope
you have noticed that this is essentially the same question as the lottery
problem. Imagine that Carl picks up his cards oue by one. The first card
can be any one of the 52 cards; whatever he picked up first, there are 51
possibilities for the second card, so there are 52 - 51 possibilities for the
first two cards. Arguing similarly, we see that there are 52 -51-50---40
possibilities for the 13 cards.

But now every hand has been counted many times. In fact, if Eve comes
to kibitz and looks into Carl's cards after he has arranged them and tries
to guess (we don't know why) the order in which he picked them up, she
could think, “He could have picked up any of the 13 cards first; he could
have picked up any of the remaining 12 cards second; any of the remaining
11 cards third. ... Aha, this is again like the seating: There are 13-12---2-1
orders in which he could have picked up his cards.”

But this means that the number of different hands in bridge is

52-51-50---40

=635 1.’:‘9;. .
51201 _ 099,013,569,600

So the chance that Carl had the same hand twice in a row is one in
635,013,559,600, which is very small indeed.

Finally, the six guests decide to play chess. Alice, who just wants to
watch, sets up three boards.

“How many ways can you guys be matched with each other?” she won-
ders. “This is clearly the same problem as seating you on six chairs; it does
not matter whether the chairs are around the dinner table or at the three
boards. So the answer is 720 as before.”

“I think you should not count it as a different pairing if two people at
the same board switch places,” says Bob, “and it shouldn’t matter which
pair sits at which board.”



4 1. Let’s Count!

“Yes, I think we have to agree on what the question really means,” adds
Carl. “If we include in it who plays white on each board, then if a pair
switches places we do get a different matching. But Bob is right that it
doesn’t matter which pair uses which board.”

“What do you mean it does not matter? You sit at the first board, which
is closest to the peanuts, and I sit at the last, which is farthest,” says Diane.

“Let’s just stick to Bob’s version of the question” suggests Eve. “It is
not hard, actually. It is like with handshakes: Alice’s figure of 720 counts
every pairing several times. We could rearrange the 3 boards in 6 different
ways, without changing the pairing.”

“And each pair may or may not switch sides” adds Frank. “This means
2.2.2 = 8 ways to rearrange people without changing the pairing. So
in fact, there are 6 - 8 = 48 ways to sit that all mean the same pairing.
The 720 seatings come in groups of 48, and so the number of matchings is
720/48 = 15.”

“I think there is another way to get this,” says Alice after a little time.
“Bob is youngest, so let him choose a partner first. He can choose his
partner in 5 ways. Whoever is youngest among the rest can choose his
or her partner in 3 ways, and this settles the pairing. So the number of
pairings is 5 -3 = 15.”

“Well, it is nice to see that we arrived at the same figure by two really
different arguments. At the least, it is reassuring” says Bob, and on this
happy note we leave the party.

1.1.2 What is the number of pairings in Carl’s sense (when it matters who sits
on which side of the board, but the boards are all alike), and in Diane’s sense
(when it is the other way around)?

1.1.3 What is the number of pairings (in all the various senses as above) in a
party of 107

1.2 Sets and the Like

We want to formalize assertions like “the problem of counting the number
of hands in bridge is essentially the same as the problem of counting tickets
in the lottery.” The most basic tool in mathematics that helps here is the
notion of a set. Any collection of distinct objects, called elements, is a set.
The deck of cards is a set, whose elements are the cards. The participants
in the party form a set, whose elements are Alice, Bob, Carl, Diane, Eve,
Frank, and George (let us denote this set by P). Every lottery ticket of the
type mentioned above contains a set of 5 numbers.

For mathematics, various sets of numbers are especially important: the
set of real numbers, denoted by R; the set of rational numbers, denoted by
Q; the set of integers, denote by Z; the set of non-negative integers, denoted
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by Z.; the set of positive integers, denoted by N. The empty set, the set
with no elements, is another important (although not very interesting) set;
it is denoted by 0.

If A is a set and b is an element of A, we write b € A. The number of
elements of a set A (also called the cardinality of A) is denoted by |A|. Thus
|P| =17, |0| =0, and |Z| = co (infinity).!

We may specify a set by listing its elements between braces; so

P = {Alice, Bob, Carl, Diane, Eve, Frank, George}
is the set of participants in Alice’s birthday party, and
{12, 23,27,33,67}

is the set of numbers on my uncle’s lottery ticket. Sometimes, we replace
the list by a verbal description, like

{Alice and her guests}.

Often, we specify a set by a property that singles out the elements from a
large “universe” like that of all real numbers. We then write this property
inside the braces, but after a colon. Thus

{xe€eZ: >0}
is the set of non-negative integers (which we have called Z, before), and
{zx € P: zis a girl} = {Alice, Diane, Eve}
(we will denote this set by G). Let us also tell you that
{zx € P: zis over 21 years old} = {Alice, Carl, Frank}

(we will denote this set by D).

A set A is called a subset of a set B if every element of A is also an
element of B. In other words, A consists of certain elements of B. We can
allow A to consist of all elements of B (in which case A = B) or none of
them (in which case A = ), and still consider it a subset. So the empty set
is a subset of every set. The relation that A is a subset of B is denoted by
A C B. For example, among the various sets of people considered above,
G C P and D C P. Among the sets of numbers, we have a long chain:

DCNCZy CZCQCR.

1In mathematics one can distinguish various levels of “infinity”; for example, one can
distinguish between the cardinalities of Z and R. This is the subject matter of set theory
and does not concern us here.
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The notation A C B means that A is a subset of B but not all of B. In the
chain above, we could replace the C signs by C. ’

If we have two sets, we can define various other sets with their help.
The intersection of two sets is the set consisting of those elements that are
elements of both sets. The intersection of two sets A and B is denoted by
AN B. For example, we have GND = {Alice}. Two sets whose intersection
is the empty set (in other words, they have no element in common) are
called disjoint.

The union of two sets is the set consisting of those elements that are
elements of at least one of the sets. The union of two sets A and B is denoted
by AU B. For example, we have GU D = {Alice, Carl, Diane, Eve, Frank}.

The difference of two sets A and B is the set of elements that belong to
A but not to B. The difference of two sets A and B is denoted by A\ B.
For example, we have G \ D = {Diane, Eve}.

The symmetric difference of two sets A and B is the set of elements
that belong to exactly one of A and B. The symmetric difference of
two sets A and B is denoted by AAB. For example, we have GAD =
{Carl, Diane, Eve, Frank}.

Intersection, union, and the two kinds of differences are similar to addi-
tion, multiplication, and subtraction. However, they are operations on sets,
rather than operations on numbers. Just like operations on numbers, set
operations obey many useful rules (identities). For example, for any three
sets A, B, and C,

AN(BUC) =(ANB)U(ANCQ). (1.1)

To see that this is so, think of an element z that belongs to the set on
the left-hand side. Then we have x € A and also x € B U C. This latter
assertion is the same as saying that either x € Bor x € C. If x € B, then
(since we also have z € C) we have x € AN B. If x € C, then similarly we
get x € ANC. So we know that x € ANB or z € ANC. By the definition of
the union of two sets, this is the same as saying that x € (ANB)U(ANC).

Conversely, consider an element that belongs to the right-hand side. By
the definition of union, this means that x € AN B or z € ANC. In the
first case, we have z € A and also x € B. In the second, we get z € A and
also z € C. So in either case x € A, and we either have z € B or x € C,
which implies that z € BU C. But this means that AN (BUC).

This kind of argument gets a bit boring, even though there is really
nothing to it other than simple logic. Onge trouble with it is that it is so
lengthy that it is easy to make an error in it. There is a nice graphic way
to support such arguments. We represent the sets A, B, and C by three
overlapping circles (Figure 1.1). We imagine that the common elements of
A, B, and C are put in the common part of the three circles; those elements
of A that are also in B but not in C are put in the common part of circles
A and B outside C, etc. This drawing is called the Venn diagram of the
three sets.
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FIGURE 1.1. The Venn diagram of three sets, and the sets on both sides of (1.1).

Now, where are those elements in the Venn diagram that belong to the
left-hand side of (1.1)? We have to form the union of B and C|, which is
the gray set in Figure 1.1(a), and then intersect it with A, to get the dark
gray part. To get the set on the right-hand side, we have to form the sets
AN B and ANC (marked by vertical and horizontal lines, respectively in
Figure 1.1(b)), and then form their union. It is clear from the picture that
we get the same set. This illustrates that Venn diagrams provide a safe and
easy way to prove such identities involving set operations.

The identity (1.1) is nice and quite easy to remember: If we think of
“union” as a sort of addition (this is quite natural), and “intersection”
as a sort of multiplication (hmm... not so clear why; perhaps after we
learn about probability in Chapter 5 you'll see it), then we see that (1.1)
is completely analogous to the familiar distributive rule for numbers:

a(b+ ¢) = ab + ac.

Does this analogy go any further? Let’s think of other properties of addi-
tion and multiplication. Two important properties are that they are com-
mutative, _

a+b=>b+a, ab = ba,

and associative,
(a+b)+c=a+ (b+c), (ab)ec = a(be).

It turns out that these are also properties of the union and intersection
operations:
AUB=BUA, ANB=BNA, (1.2)

and
(AUB)UC =AU (BUCQC), (ANB)NC=An(BNCQC). (1.3)

The proof of these identities is left to the reader as an exercise.
Warning! Before going too far with this analogy, let us point out that
there is another distributive law for sets:

AUu(BNnC)=(AUB)N(AUC). (1.4)



