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‘“‘Learning, experimenting, observing, try not to stay on the surface of
facts. Do not become the archivists of facts. Try to penetrate to the secret
of their occurrence, persistently search for the laws which govern them.”’

IvaN PAavLov



Foreword

Today’s rapidly changing technologies demand a thorough under-
standing of the principles of fluid mechanics and a knowledge of how to
apply them. Aeronautical, biomedical, chemical, civil, marine, and
mechanical engineers, as well as meteorologists and physical ocean-
ographers, encounter a multitude of complex flow phenomena. These
complex flows are often comprised of two or more phases in which the in-
teractions between them plays the dominant role in controlling transport
processes such as heat and mass exchange and reaction kinetics. Observa-
tion through quantitative experimentation is the best approach to un-
ravelling the physics of complex flow behavior and in obtaining invaluable
scale-up information for industrial applications.

This volume serves as an overview of laboratory methods aimed at
quantitative studies of flow behavior. The book describes the basis for dif-

~ferent experimental methods aimed at obtaining information on tur-
bulence structure and intensity, flow regime detection, phase interactions,
and holdup, entrainment and deposition, and interfacial phenomena in
two-phase flows. Typical experimental set-ups are described along with the
advantages/disadvantages and precision of various instruments and
methods. Discussions of data interpretation and regression are also
covered along with guidelines and recommendations for laboratory
automation of advanced experimental methods. Where possible, direction
is given for adapting certain techniques to commercial units for trouble-
shooting and control. Although the book is primarily written with the
graduate research student in mind, the more experienced researcher as well
as practitioners will find the contents of value.

Gratitude is extended to Technomic Publishing Co. for the publication
of this volume.

NICHOLAS P. CHEREMISINOFF
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1
RESIDENCE TIME DISTRIBUTIONS

INDUSTRIAL APPARATUS OFTEN handle several fluids and/or materials
which display fluid-like properties at process conditions. The design, scale-
up and operation of chemical reactors and various process equipment and
transfer lines requires knowledge of the nature of the flow structure and
the interaction between various phases. Transitions in flow regimes or flow
structure caused by contacting different materials or due to phase changes
and/or phase reactions result in different modes of operation of a piece of
equipment. The interaction and overall mixedness between phases is
largely responsible for establishing the magnitude of exchange coefficients
for mass and heat transport properties. This volume provides an overview
of instrumentation and methods for studying and quantifying the structure
of complex mixture flows. Many of the methods described were devel-
oped for studies under well-controlled test conditions. To the industrial
researcher, this is a luxury which is not often encountered; however,
with a little ingenuity, many of the systems can be adapted to commercial
reactors and in semi-works operations. In addition, some of these
methods are well suited as troubleshooting techniques for understanding
reactor malfunctions/runaways, and in actually controlling process
stability.

This first chapter reviews some basic definitions and concepts on the
phenomena of mixing in continuous flow systems. These principles help to
outline the general parameters which are of interest in understanding flow
dynamics and their relation to reactor and process performance. The con-
cepts of mean residence time and residence time distributions provide a
first pass understanding of macro-mixing behavior, from whence later
chapters will be aimed at experimental methods for quantifying mixing on
the micro-scale. An example of studying the response of a reactor through
the use of inert tracer techniques is given in this chapter. This will help to
illustrate the usefulness of the residence time distribution concept, but also
give the newcomer a flavor for planning and executing experimental pro-
grams.



2  RESIDENCE TIME DISTRIBUTIONS

GENERAL DEFINITIONS AND PROPERTIES OF RTD

To begin, consider any continuous flow system to be comprised of one
or more entrances and exits; and assume that no reaction takes place and
that the system is at steady state. Further, we define the term particle to
denote any conserved entity such as a molecule, Brownian particle or fluid
element. Particles enter the system, remain in it for some period of time
which may be either deterministic or probabilistic, and eventually exit. We
permit the situation where a particle makes a number of temporary exits
with subsequent re-entrances, but it is required that each particle has some
original, first entrance and an ultimate, final exit. Particles have zero age
when they first enter and acquire age at a rate equal to time spent within
the system boundaries. Aging stops during any temporary exit but resumes
at the previous value when the particle re-enters. The age of a particle at its
last exit from the system is referred to as the residence time, t.

In systems with several types of conserved entities, attention will be
restricted to some agreed upon class of entities and the flow rate through
the system will refer to the flow rate for that class.

The mathematical definition of residence time takes the form of the
cumulative distribution function, F(#), where F(¢) = Probability that a
particle had a residence time less than 7.

When observations are made for a large number of particles, F(7)
defines the fraction of the particles or the fraction of the particle flow rate
which had residence times less than ¢. Since residence times cannot be
negative, F(#) is defined over (0,%); and, due to the probability interpreta-
tion, F(¢) must be nondecreasing over that interval. The range of F(¢) is 0
to 1 with F(0—) = 0 and F(e) = 1. From a physical standpoint it would
seem that F(¢) is continuous, however, by discretizing F(#) we allow for
isolated points of discontinuity where F(f) undergoes a step change. One
such point of discontinuity may be at the origin with F(0+) = b. In this
case a fraction of the fluid stream bypasses the system and experiences zero
residence time. The situation F () < 1 corresponds to stagnancy or dead
volume, and it is usually preferred to redefine the system volume so that
F(o) = 1.

The decay or washout function, W (), is defined as:

W()=1-F(@) (1)
W () refers to the fraction of particles which' experienced residence times
greater than ¢ so that W(0—) = 1 and W() = 0.

The differential distribution or frequency function is obtained by dif-

ferentiating F'(#):

dF
=" @
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This gives a non-negative function defined over (0,0). It is common prac-
tice to use the Dirac delta function, d(¢ — ¢,), to represent f(¢) at points
where F(f) undergoes a step change.

Moments of the residence time distribution are defined in the usual way
for non-negative random variables. The moments about the origin are:

Kn =S rf(n)dt 3
0

wheren=0,1,2,... .

The zeroth moment is equal to unity as a consequence of requiring that
F(o) = 1. The first moment is the mean of the residence time distribution
and is usually denoted at 7. One would expect 7 to be finite although this is
not a direct consequence of the mathematical formulation. In fact, F(#)
can be devised such that it satisfies the restrictions on cumulative distribu-
tion functions yet maintain infinite means. Higher moments from a
mathematical sense may also be infinite; however, molecular diffusion en-
sures that all moments are finite in real systems.

A useful alternative to Equation (1) is:

M = nS W) dt 4)
0

which can be verified through integration by parts. This expression is true
whenever " W(t) approaches zero in the limit of large # which in turn will
be satisfied if the next higher moment, u, . ,, exists.

Since ¢ > 0, the u, forms an ordered set such that 1n(u,)/n is a non-
decreasing function of n. If y, is finite then so are all lower moments, and
if p, is infinite then so are all higher moments. If y, = 1, the distribution is
normalized and the ordering of the set takes the form:

1 <po <ps <. .. )
The limiting case with u, = 1 for all n represents a delta function distribu-

tion where all molecules have an identical residence time.
The moments of F(#) about the mean are defined as:

T =s (t = 0)"f(t) dt (©)
0

where u/ = 0 and u, > O for all higher n. The various u, and u, may be
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related in the conventional manner for probability distributions; for
example:
Fz’ = M2 — (7)2 = o} ™)

and
M= s — 31py + 2(0)° ®)

where u, = o?is the variance of the distribution and yj is the skewness. The
special case where u, = 1 for all n gives u,, = 0 for all n > 0 since there is no
variation in residence times about the mean.

The u, definitions are particularly useful as normalized distributions
with u, = 1. They then provide a measure of the shape of f(#) which is in-
dependent of the magnitude of 7. Hence, to define a dimensionless nor-
malized distribution for a given :

fn(8) = 1f(60) ©)
The moments of fy(6) are related to those of f(¢) by:

(Ha)o = (pa). /()" (10)
with a similar relationship holding for the u,. The moments of fy(6) are

seen to provide dimensionless measures of the shape of the residence time
distribution. The dimensionless variance

o2

(1)

o =s0 (6 — 1)*/~(6)d6 = (1

has proven particularly useful in fitting models to residence time distribu-
tions. It has a theoretical range of zero to infinity but the actual range in
many practical situations is 0 < 0 < 1.

It is useful to employ the Laplace transform of f(#), defined as:

o

f() =S e f(1) dt (12)

o

where s is the transform parameter. If f(s) is known, the moments of f(¢)

can be obtained by differentiation:

_ Lim df )
s—>0 ds"

K= (1) (13)
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Laplace transforms of residence time distributions are used for summing
flow networks in a manner analogous to their use in summing electrical net-
works in linear circuit theory. Let f;(¢) and f,(¢) represent the differential
distribution functions for two flow systems in series and let g(¢) be the
overall distribution function for the composite system. Suppose that the
two vessels are statistically independent so that the time a particle spends in
one vessel has no effect on the time it will spend in the other. Then the
various distribution functions are related in the time domain by convolu-
tion.

t t
g(0) =S Sit = 1) fa (1) dr =S S fo(t—1)dt (14)
o

o
and in the transform domain by multiplication

2(s) = £1(s) fa(s). as)
If the flow systems are in parallel,

g(t) = wfi() + (1 — w) fa(1) (16)

where w = fraction of the total particle flow which goes to flow system #1.
This same additive rule applies in the transform domain:

2(s) = whi(s) + (1 — w) fo(s) a7

Recycle flows can also be analyzed using the Laplace transform approach.
There is no simple, time domain solution for the composite residence time
distribution of the recycle system shown in Figure 1-1. The transform
domain solution is:

PARTICLE FLOW, Q@

FLOW SYSTEM 1 Q

FLOW SYSTEM 2

Figure 1-1. Illustrates a recycle system.
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F(s) = Ju(s) (18)

1 +% (1 = F:()Fa(9)]

The above expressions enable the determination of residence time
distributions (RTD) in flow networks of any complex. A key assumption
in the calculations is that the subsystems are independent so that time spent
in one vessel has no influence on time spent in another vessel or on the time
spent in the same vessel should a particle return to that vessel. It should be
noted that this assumption is not always satisfied in practice. Laminar flow
systems routinely violate it as do fluid-particle systems where particle
velocities depend on some parameter such as size.

Equation (15) is readily extended to i vessels in series, and the mean
residence time for this series combination can be found using Equation
19)

(;)series = z ;n (19)
I

Taking the second derivative and applying Equation (7) gives

(09 series = )l: (o) (20)

so that means and variances are additive for series combinations of
statistically independent flow systems. This is also true for the skewness, u;
but not for higher moments.

Closely related to the Laplace transform of f(¢) is the generating func-
tion for the cumulants of the distribution

Lim d~ -
K. = (=1 0 (nf(s) @

Note that this relation gives the mean, variance and skewness directly
without resorting to Equations (7) and (8). The fourth and higher
cumulants are related to moments in a more complex manner. For exam-
ple, the kurtosis of the distribution, u4, depends on the second and fourth
cumulants:

“4’=K4+3K%. (22)

The cumulants have the useful property that they are strictly additive for
independent systems in series.
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MEASUREMENT OF RTD

The ease of measuring residence time distributions depends on the
nature of flow in the inlet and outlet streams rather than on the nature of
the flow within the system. The ideal situation is to have uniform velocity
profiles and no diffusion in the inlet and outlet transfer lines. Such a
system is said to be closed, and closed systems allow easy determination of
residence time distributions both mathematically and experimentally
through transient response techniques. To illustrate this, consider a con-
tinuous flow system with a single inlet and single outlet. If we replace some
fraction of the incoming particles with tracer particles which are identical
in flow characteristics but which have some non-flow attribute which
allows easy detection, then the tracer particles will follow the same paths
through the system as did the original particles they replaced. Further-
more, they will have the same distribution of residence times as the original
particles. The easiest way to measure this distribution is to inject the tracer
particles in a short duration pulse which can be mathematically repre-
sented as a delta function, d(¢). The closed system under consideration
allows such an injection and ensures that particles which once enter the
system will stay until they finally leave. All the tracer particles will have
entered the system at exactly the same time but will leave at varying times.
By recording the times when particles leave, a histogram can be con-
structed which, with a large sample size, will converge to the differential
distribution function, f(#). In experimental practice, a quantity of tracer is
rapidly injected at the inlet to the system and the outlet concentration is
monitored as a function of time, ¢(#). Then c(¢) is normalized to give a dif-
ferential distribution function, f(#), with y, = 1:

fin=—28— @3)

c(t) dt
o

Note that f(¢) is the impulse response function for a closed system. The
response of the system to more complex input signals may be found by
convolution

t
c(n) =S cm(7) f(1 — 1) dt (24)

- 00

Note that the lower limit on this expression differs from that on Equation
(14) since c¢;,(7) is defined for all —o < 1 < ¢ while f(t) is defined only for
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0 < t<t. Equation (24) allows determination of f(#) by using input
signals such as sine waves and even random noise. Step change inputs are
useful. Suppose c..(#) = 0 for £ < 0 and c:.(f) = ¢, = 1 for £ 2 0. Then the
system response gives the cumulative distribution function, F(#), directly.
Similarly, a step-down change of the form c..(¢¥) =c, =1 for t+ <0 and
c.(t) = 0 for ¢t > 0 gives the residence time washout function, W(¢).

Perfect delta function and step change inputs are possible only in the
mathematical sense. There, they are commonly used as initial conditions to
establish the residence time distribution corresponding to a mathematical
model of the system. For example, the dynamic model for a perfectly
mixed, stirred tank reactor is

d(V
A — = Quec. 25)

Assuming V and Q are constant we apply a step change, ¢ =0 for 7 < 0
and ¢ = 1 for ¢t > 0, as the initial condition for Equation (25). The solution
is

F()=c(t)=1—e" (26)

where t = V/Q.

This represents the residence time distribution function since the
modelled system is closed and since a perfect step change was applied to
the inlet.

In experimental determinations it may not be possible to apply a good
impulse or step change to the inlet of the system. If, however, the system is
adequately closed and if the actual imperfect input signal can be monitored,
then the true residence time distribution can still be determined. Equation
(24) gives the theoretical justification for this statement: ¢, and c are
measured and Equation (24) inverted to give f(¢). One approach is
numerical Laplace transformation followed by numerical inversion,
however this is cumbersome. A simpler, time doman approach is available
when only the mean residence time, 7, and variance, o? are needed rather
than the entire distribution function. This approach was first popularized
by Bischoff " and depends on the additive nature of means and variances
in statistically independent series systems. Using the measured concentra-
tion response, c(?), one calculates the mean and variance for the composite
system which includes the inlet line. Then c.,(¢) is used to calculate 7 and o?
for the inlet line alone, and these values are subtracted from the composite
ones to obtain corrected results for the system alone. This approach is
referred to as the imperfect pulse method, but it applies equally well when
the input signal is an imperfect step change.



