ENVIRONMENTAL SIXTH EDITION GEOLOGY

CARLA W.

MONTGOMERY

CARLA W. MONTGOMERY

Northern Illinois University

ENVIRONMENTAL

GEOLOGY

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

McGraw-Hill Higher Education χ

A Division of The McGraw-Hill Companies

ENVIRONMENTAL GEOLOGY, SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2003, 2000, 1997, 1995, 1992, 1989, 1986 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

6 11113 000

igoplus This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

International Domestic 234567890QPD/QPD0987654 34567890QPD/QPD0987654

ISBN 0-07-366195-3 ISBN 0-07-119941-1 (ISE)

Publisher: Margaret J. Kemp

Developmental editor: Lisa Leibold

Executive marketing manager: Lisa Gottschalk

Project manager: Richard H. Hecker Production supervisor: Enboge Chong Design manager: Stuart D. Paterson Cover/interior designer: Jamie E. O'Neal Cover image: Courtney Milne/Masterfile

Spine and back cover image: *Brad Wrobleski/Masterfile* Senior photo research coordinator: *John C. Leland*

Photo research: Amy Bethea

Senior supplement producer: *Tammy Juran* Media technology producer: *Renee Russian*

Compositor: *Shepherd, Inc.* Typeface: 10/12 *Palatino*

Printer: Quebecor World Dubuque, IA

Photos not credited on page provided by author, Carla W. Montgomery. Interior design images provided by Adobe Image Library, Corbis, DigitalVision, and Letraset.

Library of Congress Cataloging-in-Publication Data

Montgomery, Carla W., 1951-

Environmental geology / Carla W. Montgomery. — 6th ed.

p. cm

Includes bibliographical references and index.

ISBN 0-07-366195-3

1. Environmental geology. I. Title.

QE38 .M66 2003

550—dc21

2001041036

CIP

INTERNATIONAL EDITION ISBN 0-07-119941-1

Copyright © 2003. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture and export. This book cannot be re-exported from the country to which it is sold by McGraw-Hill. The International Edition is not available in North America.

Environmental Geology is affectionately dedicated to the memory of Ed Jaffe, whose confidence in an unknown author made the first edition possible.

-CWM-

PREFACE

The *environment* is the sum of all the features and conditions surrounding an organism that may influence it. An individual's physical environment encompasses rocks and soil, air and water, such factors as light and temperature, and other organisms present. One's social environment might include a network of family and friends, a particular political system, and a set of social customs that affect one's behavior.

Geology is the study of the earth. Because the earth provides the basic physical environment in which we live, all of geology might in one sense be regarded as environmental geology. However, the term *environmental geology* is usually restricted to refer particularly to geology as it relates directly to human activities, and that is the focus of this book. Environmental geology is geology applied to living. We will examine how geologic processes and hazards influence human activities (and sometimes the reverse), the geologic aspects of pollution and waste-disposal problems, and several other topics.

Why environmental geology? One reason for studying environmental geology might simply be curiosity about the way the earth works, about the *how* and *why* of natural phenomena. Another reason is that we are increasingly faced with environmental problems to be solved and decisions to be made, and in many cases, an understanding of one or more geologic processes is essential to finding an appropriate solution.

Of course, many environmental problems cannot be fully assessed and solved using geologic data alone. The problems vary widely in size and in complexity. In a specific instance, data from other branches of science (such as biology, chemistry, or ecology), as well as economics, politics, social priorities, and so on may have to be taken into account. Because a variety of considerations may influence the choice of a solution, there is frequently disagreement about which solution is "best." Our personal choices will often depend strongly on our beliefs about which considerations are most important.

An introductory text cannot explore all aspects of environmental concerns. Here, the emphasis is on the physical constraints imposed on human activities by the geologic processes that have shaped and are still shaping our natural environment. In a real sense, these are the most basic, inescapable constraints; we cannot, for instance, use a resource that is not there, or build a secure home or a safe dam on land that is fundamentally unstable. Geology, then, is a logical place to start in developing an understanding of many environmental issues. The principal aim of this book is to present the reader with a

broad overview of environmental geology. Because geology does not exist in a vacuum, however, the text, from time to time, introduces related considerations from outside geology to clarify other ramifications of the subjects discussed. Likewise, the present does not exist in isolation from the past and future; occasionally, the text looks both at how the earth developed into its present condition and where matters seem to be moving for the future. It is hoped that this knowledge will provide the reader with a useful foundation for discussing and evaluating specific environmental issues, as well as for developing ideas about how the problems should be solved.

ABOUT THE BOOK

This text is intended for an introductory-level college course. It does not assume any prior exposure to geology or college-level mathematics or science courses. The metric system is used throughout, except where other units are conventional within a discipline. (For the convenience of students not yet "fluent" in metric units, a conversion table is included in appendix D, and in some cases, metric equivalents in English units are included within the text.)

Each chapter opens with an introduction that sets the stage for the material to follow. In the course of the chapter, important terms and concepts are identified by boldface type, and these terms are collected as "Terms to Remember" at the end of the chapter for quick review. Many chapters include actual case histories or specific examples. To these, each reader could no doubt add others from personal experience. Each chapter concludes with review questions and exercises, which allow students to test their comprehension and to apply their knowledge, and also suggested readings and pertinent references. Additional references, including older and more technical ones, are found at the book's Web site.

A feature introduced with the fifth edition is the inclusion of "NetNotes" at the end of each chapter. These are modest collections of Internet sites that provide additional information and/or images. An effort has been made to concentrate on sites with material at an appropriate level for the book's intended audience and also on sites likely to be relatively stable in the very fluid world of the Internet (government, agency, educational-institution, or professional-association sites). Though limited by space, this selection should particularly help the novice user get started exploring, and it has been significantly updated in the latest edition.

With this edition, each chapter includes a boxed reading relating to chapter material that involves a situation, problem, or application that might be encountered in everyday life. The tone, in many cases, is light, but the underlying issues are nonetheless real. While some boxes were inspired by actual events, and some include specific factual information, all of the characters quoted, and their interactions, are wholly fictitious. (Users who may miss boxed readings from earlier editions will find some of their contents incorporated into the text in this edition, and the old boxes, intact, at the Online Learning Center.)

The book starts with some background information: a brief outline of earth's development to the present, and a look at one major reason why environmental problems today are so pressing—the large and rapidly growing human population. This is followed by a short discussion of the basic materials of geology—rocks and minerals—and some of their physical properties, which introduces a number of basic terms and concepts that are used in later chapters.

The next several chapters treat individual processes in detail. Some of these are large-scale processes, which may involve motions and forces in the earth hundreds of kilometers below the surface, and may lead to dramatic, often-catastrophic events like earthquakes and volcanic eruptions. Other processes—such as the flow of rivers and glaciers or the blowing of the wind—occur only near the earth's surface, altering the landscape and occasionally causing their own special problems. In some cases, geologic processes can be modified, deliberately or accidentally; in others, human activities must be adjusted to natural realities.

A subject of increasing current concern is the availability of resources. A series of five chapters deals with water resources, soil, minerals, and energy, the rates at which they are being consumed, probable amounts remaining, and projections of future prospects. In the case of energy resources, we consider both those sources extensively used in the past, and new sources that may or may not successfully replace them in the future.

Increasing population and increasing resource consumption seem to lead to an increasing volume of waste to be disposed of; thoughtless or inappropriate waste disposal commonly leads to increasing pollution. Three chapters examine the interrelated problems of air and water pollution and the strategies available for the disposal of various kinds of wastes.

The final two chapters deal with a more diverse assortment of subjects. Environmental problems spawn laws intended to solve them; the environmental-law chapter looks briefly at a sampling of laws and international agreements related to geologic matters discussed earlier in the book, as well as at some of the problems with such laws and accords. The land-use planning and engineering geology chapter examines geologic

constraints on construction schemes and the broader issue of trying to determine the optimum use(s) for particular parcels of land, matters that become more pressing as population growth pushes more people to live in marginal places. While the "Geomedicine" chapter no longer appears, aspects of the subject are now integrated into several other chapters, and the emerging topic of health and climate change is recognized in chapter 9.

Relative to the length of time we have been on earth, humans have had a disproportionate impact on this planet. Appendix A explores the concept of geologic time and its measurement, and looks at the rates of geologic and other processes by way of putting human activities in temporal perspective. Appendix B gives an introduction to topographic and geologic maps and satellite and other kinds of imagery, highlighting some new techniques for examining the earth. Appendix C provides short reference keys to aid in rock and mineral identification, and Appendix D includes units of measurement and conversion factors. The Glossary collects definitions of boldface terms and select additional terms for quick reference.

Available with this text is an Instructor's Manual containing over 750 test questions. The test questions found in the Instructor's Manual are also available on McGraw-Hill classroom testing software, for use with the Macintosh® and IBM® PC computers. Also available are 170 acetate transparencies of key text illustrations and 120 color slides. These are designed to aid instructors in class presentations and to enhance student learning activities.

ACKNOWLEDGMENTS

A great many people have contributed to the development of one or another edition of this book. Portions of the manuscript of the first edition were read by Colin Booth, Lynn A. Brant, Arthur H. Brownlow, Ira A. Furlong, David Huntley, John F. Looney, Jr., Robert A. Matthews, and George H. Shaw, and the entire book was reviewed by Robert A. Marston and Donald J. Thompson. The second edition was enhanced through suggestions from William N. Mode, Laura L. Sanders, Jeffrey J. Gryta, Martin Reiter, Robert D. Hall, Robert B. Furlong, David Gust, and Stephen B. Harper; the third was further refined with the assistance of Susan M. Cashman, Robert B. Furlong, William N. Mode, Frank Hanna, Laura L. Sanders, Paul Nelson, and Michael A. Velbel; the fourth was strengthened through the input of reviewers Pascal de Caprariis, James Cotter, John Vitek, Paul Schroeder, Steven Lund, Barbara Ruff, Gordon Love, Herbert Adams, Michael McKinney, Thomas E. Hendrix, Clifford Thurber, Ali Tabidian, Dru Germanoski, and Randall

Scott Babcock; and the fifth edition from reviews by Barbara L. Ruff, University of Georgia; Michael Whitsett, University of Iowa; John F. Hildenbrand, Clover Park Technical College; Alvin S. Konigsberg, State University of New York at New Paltz; Vernon P. Scott, Oklahoma State University; Jim Stimson, Carroll College; Kevin Cole, Grand Valley State University; Gilbert N. Hanson, State University of New York at Stony Brook; Doreen Zaback, Vanderbilt University; and Ann E. Holmes, Columbia University. This sixth edition has benefited still further from careful reviews by Ray Beiersdorfer, Youngstown State University; Ellin Beltz, Northeastern Illinois University; William B. N. Berry, University of California, Berkeley; Paul Bierman, University of Vermont; W. B. Clapham, Jr. Cleveland State University; Ralph K. Davis, University of Arkansas; Brian E. Lock, University of Louisiana, Lafayette; Gregory Hancock, College of William and Mary; Syed E. Hasan, University of Missouri, Kansas City; Scott W. Keyes, Tarrant County College; Jason W. Kelsey, Marymount University; John F. Looney, Jr., University of Massachusetts, Boston; Christine Massey, University of Vermont; Steve Mattox, Grand Valley State University; William N. Mode, University of Wisconsin, Oshkosh; William A. Newman, Northeastern University; Clair R. Ossian, Tarrant County College; David L. Ozsvath, University of Wisconsin, Stevens Point; Alfred H. Pekarek, St. Cloud State University; Paul H. Reitan, University of Buffalo; and Don Rimstidt, Virginia Tech. The thoughtful suggestions of all of the foregoing individuals, and many other users who have informally offered additional advice, have substantially

improved the text, and their help is most gratefully acknowledged. Any remaining shortcomings are, of course, my own responsibility.

M. Dalechek, C. Edwards, I. Hopkins, and J. McGregor, at the USGS Photo Library in Denver, have provided invaluable assistance with the photo research over the years. The encouragement of a number of my colleagues—particularly Colin Booth, R. C. Flemal, Donald M. Davidson, Jr., R. Kaufmann, and Eugene C. Perry, Jr.—was a special help during development of the first edition. The ongoing support and interest of fellow author, deanly colleague, and ecologist Jerrold H. Zar has, in turn, helped immensely to make the revision cycles survivable. Thanks are also due to the several thousand environmental-geology students I have taught, many of whom in the early years suggested that I write a text, and whose classes collectively have provided a testing ground for many aspects of the presentations herein.

My family has been supportive of this undertaking from the inception of the first edition. A very special vote of appreciation goes to my husband Warren—everpatient sounding board, occasional photographer and field assistant—in whose life this book has so often loomed so large.

Last, but assuredly not least, I express my deep gratitude to the entire McGraw-Hill book team, and their predecessors at Wm. C. Brown Publishers, for their enthusiasm, professionalism, and just plain hard work, without which successful completion of each succeeding edition of this book would have been impossible.

THE ONLINE LEARNING CENTER

Your Password to Success

www.mhhe.com/montgomery6/

This text-specific Web site allows students and instructors from all over the world to communicate. Instructors can create a more interactive course with the integration of this site, and students will find tools such as practice quizzes, additional readings, and a student study guide that will help them improve their grades and learn that environmental geology is fun.

Student Resources

Student Study Guide Interactive Quizzing Guest Essays Access to PowerWeb-Geology Web Links and more!

Instructor Resources

Access to PowerWeb-Geology
Password Protected Instructor's
Manual
Password Protected Test Item File
PowerPoint Slides containing lecture
outlines, line art, and photographs
from the textbook
Web links and more!

THE GOOD EARTH

www.mhhe.com/earthsci/geology/mcconnell/

The Good Earth represents an **integrated series of Web resources** managed from a single site, designed to make it possible for any instructor or student with an Internet connection to utilize the power and dynamism of the Web in Introductory Geology courses.

Built from the original site, the updated **Good Earth** Web site provides enhancement and supplemental material to support this text. Features of the site include animations, text material, study aids, quizzing, interactive Web activities, and links.

POWERWEB— GEOLOGY

www.dushkin.com/powerweb/

PowerWeb—your professor's turnkey solution for keeping your course current with the Internet!

PowerWeb is a password-protected website developed by McGraw-Hill/Dushkin giving instructors and students:

Course-specific materials
Referred course-specific web links and articles
Student study tools—quizzing, review forms, time management tools, web research
Interactive exercises

Weekly updates with assessment
Informative and timely world news
Access to Northern Light Research
Engine (received multiple Editor's
Choice awards for superior
capabilities from "PC Magazine")
Material on how to conduct Web

research

Daily news feed of topic-specific news

CONTENTS

SECTION ONE

Foundations

CHAPTER 1

An Overview of Our Planetary Environment 1

Earth in Space and Time 2
The Early Solar System 2
The Planets 2
Earth, Then and Now 3
Life on Earth 6

Geology, Past and Present 6
The Geologic Perspective 7
Geology and the Scientific Method 7
The Motivation to Find Answers 8
Wheels Within Wheels: Earth Cycles and Systems 10

Nature and Rate of Population Growth 12 Growth Rates: Causes and Consequences 12 Growth Rate and Doubling Time 13

Impacts of the Human Population 14
Farmland and Food Supply 14
Population and Nonfood Resources 15
Uneven Distribution of People and Resources 17
Disruption of Natural Systems 18
Is Extraterrestrial Colonization a Solution? 19

LIVING GEOLOGY BOX 1: Reality in Round Numbers (or, how many is a crowd?) 21

SUMMARY 22 TERMS TO REMEMBER 22 EXERCISES 22 SUGGESTED READINGS/REFERENCES 23 NETNOTES 23

CHAPTER 2

Rocks and Minerals—A First Look 25

Atoms, Elements, Isotopes, Ions, and Compounds 26 Atomic Structure 26 Elements and Isotopes 26 Ions 27 Compounds 27

Minerals—General 27
Minerals Defined 27
Identifying Characteristics
of Minerals 27
Other Physical Properties of Minerals 29

Types of Minerals 30 Silicates 31 Nonsilicates 31

Rocks 33

LIVING GEOLOGY BOX 2: Minerals—Risky Business? 34

The Rock Cycle 35 Igneous Rocks 35 Sediments and Sedimentary Rocks 37 Metamorphic Rocks 39 The Rock Cycle Revisited 41

SUMMARY 41 TERMS TO REMEMBER 41 EXERCISES 42 SUGGESTED READINGS/REFERENCES 42 NETNOTES 42

SECTION TWO

Internal Processes

CHAPTER 3

Plate Tectonics 43

Plate Tectonics—General Principles 44 Stress and Strain in Geologic Materials 44 Lithosphere and Asthenosphere 45 Locating Plate Boundaries 45

Plate Movements—Accumulating Evidence 47
The Topography of the Sea Floor 47
Magnetism in Rocks—General 49
Paleomagnetism and Seafloor Spreading 49
Age of the Ocean Floor 49
Polar-Wander Curves 50
Other Evidence 53

Types of Plate Boundaries 56 Divergent Plate Boundaries 56

Transform Boundaries 56 Convergent Plate Boundaries 57

How Far, How Fast, How Long, How Come? 59 Past Motions, Present Velocities 59

LIVING GEOLOGY BOX 3: Subduction Zones—Disposal Zones? 60

Why Do Plates Move? 61 History of Plate Tectonics 61

Plate Tectonics and the Rock Cycle 64

SUMMARY 64 TERMS TO REMEMBER 65 EXERCISES 65 SUGGESTED READINGS/REFERENCES 66 NETNOTES 66

CHAPTER 4

Earthquakes 67

Earthquakes—Basic Theory 70

Basic Terms 70

Earthquake Locations 70

Seismic Waves and Earthquake Severity 71

Seismic Waves 71

Locating the Epicenter 71

Magnitude and Intensity 73

Earthquake-Related Hazards and Their

Reduction 75

Ground Motion 76

Ground Failure 79

Tsunamis and Coastal Effects 80

Fire 80

Earthquake Prediction and Forecasting 81

Seismic Gaps 81

Earthquake Precursors and Prediction 82 Current Status of Earthquake Prediction 82

The Earthquake Cycle and Forecasting 83

Earthquake Control? 84

Earthquake Awareness, Public Response 86

Concerns Related to Predictions 86

Public Response to Earthquake Hazards 86

Further Thoughts on Modern and Future U.S.

and Canadian Earthquakes 86

Areas of Widely Recognized Risk 86

LIVING GEOLOGY BOX 4: "Earthquake-Proof" Buildings? 87

Other Potential Problem Areas 89

SUMMARY 92

TERMS TO REMEMBER 93

EXERCISES 93

SUGGESTED READINGS/REFERENCES 93

NETNOTES 94

CHAPTER 5

Volcanoes 95

Magma Sources and Types 97

Kinds and Locations of Volcanic Activity 98

Individual Volcanoes—Locations 98

Seafloor Spreading Ridges, Fissure

Eruptions 98

Shield Volcanoes 100

Volcanic Domes 100

Cinder Cones 101

Composite Volcanoes 101

Hazards Related to Volcanoes 103

Lava 103

Pyroclastics 105

Lahars 106

Pyroclastic Flows—Nuées Ardentes 107

Toxic Gases 110

Steam Explosions 110

Secondary Effects: Climate and Atmospheric

Chemistry 110

Issues in Predicting Volcanic Eruptions 112

Classification of Volcanoes by Activity 112

Volcanic Precursors 112

LIVING GEOLOGY BOX 5: All the Land's a Lava Flow . . . 114

Response to Eruption Predictions 117

Present and Future Volcanic Hazards

in the United States 118

Hawaii 118

Cascade Range 118

The Aleutians 119

Long Valley and Yellowstone Calderas 120

SUMMARY 122

TERMS TO REMEMBER 123

EXERCISES 123

SUGGESTED READINGS/REFERENCES 123

NETNOTES 124

SECTION THREE

Surface Processes

CHAPTER 6

Streams and Flooding 125

The Hydrologic Cycle 126

Streams and Their Features 127

Streams—General 127

Sediment Transport 127

Velocity, Gradient, and Base Level 128

Velocity and Sediment Sorting and Deposition 128

Channel and Floodplain Evolution 129

Flooding 130

Factors Governing Flood Severity 130

Flood Characteristics 133

Stream Hydrographs 134

Flood-Frequency Curves 135

Consequences of Development in Floodplains 138

Reasons for Floodplain Occupation 138

Effects of Development on Flood Hazards 139

Strategies for Reducing Flood Hazards 140

Restrictive Zoning and "Floodproofing" 140

Retention Ponds, Diversion Channels 141

Channelization 141

LIVING GEOLOGY BOX 6: Looking Out for the "Flash" in "Flash Floods" 142

Levees 143

Flood-Control Dams and Reservoirs 144

SUMMARY 146

TERMS TO REMEMBER 146

EXERCISES 146

SUGGESTED READINGS/REFERENCES 147 NETNOTES 147

CHAPTER 7

Coastal Zones and Processes 149

Nature of the Coastline 150

Emergent and Submergent Coastlines 152 Causes of Long-Term Sea-Level Change 152 Signs of Changing Relative Sea Level 154

Coastal Erosion, Sediment Deposition and Transport 155 Sand Transport and Beach Erosion 155 Cliff Erosion 157

Especially Difficult Coastal Environments 159 Barrier Islands 159 Estuaries 161

Weather, Climate, and Coastal Dynamics 162
Present and Future Sea-Level Trends 162
Storms and Coastal Erosion 162

Costs of Construction—and Reconstruction—in High-Energy Environments 164 Recognition of Coastal Hazards 165

LIVING GEOLOGY BOX 7: Now You See It, Now You Don't 167

SUMMARY 168
TERMS TO REMEMBER 168
EXERCISES 168
SUGGESTED READINGS/REFERENCES 169
NETNOTES 169

CHAPTER 8

Mass Movements 171

Factors Influencing Slope Stability 173
Effects of Slope and Materials 173

Effects of Fluid 175 Effects of Vegetation 175 Earthquakes 176 Quick Clays 176

Types of Mass Wasting 176

Falls 178 Slumps and Slides 178 Flows and Avalanches 179 Scales and Rates of Movements 179

Consequences of Mass Movements 180

Impact of Human Activities 181 In Harm's Way #1: The Vaiont Dam 183 In Harm's Way #2: The Venezuelan Coast 184

Possible Preventive Measures 184

Slope Reduction 185 Retention Structures 186 Fluid Removal 186 Other Slope-Stabilization Measures 187 Recognizing the Hazards 189 Landslide Warnings? 192

LIVING GEOLOGY BOX 8: Watching the Slippery Slope 193

SUMMARY 195
TERMS TO REMEMBER 195
EXERCISES 195
SUGGESTED READINGS/REFERENCES 196
NETNOTES 196

CHAPTER 9

Geology and Climate: Glaciers, Deserts, and Global Climate Trends 197

Glaciers and Glacial Features 198

Glacier Formation 198 Types of Glaciers 199 Movement and Change of Glaciers 200 Glacial Erosion and Deposition 201 Glaciers as a Water Source 204

Wind and Its Geologic Impacts 205

Wind Erosion 206 Wind Deposition 208 Dune Migration 208 Loess 208

Deserts and Desertification 210 Causes of Natural Deserts 210

> Desertification 211 Causes of Desertification 212 Desertification in the United States 213 Global Impact of Desertification 213

Global Climate, Past and Present 213

LIVING GEOLOGY BOX 9: Climate—Blowing Hot and Cold 214

Evidence of Climates Past 216 Ice Ages and Their Possible Causes 217

Climate, Present and Future 219

The Greenhouse Effect and Global Warming 219 Climate Change Is More Than Global Warming 223 Winds and Currents, Climate and Commerce: El Niño 223

SUMMARY 226
TERMS TO REMEMBER 226
EXERCISES 226
SUGGESTED READINGS/REFERENCES 227
NETNOTES 228

SECTION FOUR

RESOURCES 229

Resources, People, and Standards of Living 229

Projection of Resource Supply and Demand 230

CHAPTER 10

Water as a Resource 233

The Global Water Budget 234
Fluid Storage and Movement: Porosity
and Permeability 234

Subsurface Waters 235

Aguifer Geometry 236

Confined and Unconfined Aquifers 236 Other Factors in Water Availability 237

Consequences of Groundwater Withdrawal 238

Lowering the Water Table 238 Compaction and Surface Subsidence 239 Saltwater Intrusion 240

Other Impacts of Urbanization on Groundwater Systems 240

Loss of Recharge 242 Artificial Recharge 243

Other Features Involving Subsurface Water 243

Sinkholes 243 Karst 243

Water Quality 244

Measures of Water Quality 244 Hard Water 245

Water Use, Water Supply 245

General U.S. Water Use 245 Surface Water versus Ground Water as Supply 245

LIVING GEOLOGY BOX 10: What's in the Water? 246

Regional Variations in Water Use 249

Case Studies in Water Consumption 250

The Colorado River Basin 252 The High Plains (Ogallala) Aquifer System 255 The Aral Sea 256

Extending the Water Supply 256

Conservation 256 Interbasin Water Transfer 257 Desalination 259

SUMMARY 260 TERMS TO REMEMBER 261 EXERCISES 261 SUGGESTED READINGS/REFERENCES 261 NETNOTES 262

CHAPTER 11

Soil as a Resource 263

Soil Formation 264

Soil-Forming Processes: Weathering 264 Soil Profiles, Soil Horizons 265

Chemical and Physical Properties of Soils 267

Color, Texture, and Structure of Soils 267 Soil Classification 268

Soils and Human Activities 269

Lateritic Soil 269
Wetland Soils 272
Soil Erosion 272
Soil Erosion versus Soil Formation 276
Strategies for Reducing Erosion 276
Irrigation and Soil Chemistry 279
The Soil Resource—The Global View 280

LIVING GEOLOGY BOX 11: Unintended Consequences 282

SUMMARY 283
TERMS TO REMEMBER 283
EXERCISES 283
SUGGESTED READINGS/REFERENCES 284
NETNOTES 284

CHAPTER 12

Mineral and Rock Resources 285

Ore Deposits 286
Definition 286
Distribution 286

Types of Mineral Deposits 288

Igneous Rocks and Magmatic Deposits 288
Hydrothermal Ores 288
Relationship to Plate Margins 290
Sedimentary Deposits 291
Other Low-Temperature OreForming Processes 292
Metamorphic Deposits 293

Mineral and Rock Resources—Examples 293

Metals 293 Nonmetallic Minerals 294 Rock Resources 294

Mineral Supply and Demand 294

U.S. Mineral Production and Consumption 294 World Mineral Supply and Demand 295

Minerals for the Future: Some Options Considered 299

> New Methods in Mineral Exploration 299 Marine Mineral Resources 303 Conservation of Mineral Resources 303

LIVING GEOLOGY BOX 12: What's in a 12-Ounce Can? 305

Impacts of Mining Activities 306

Underground Mines 307 Surface Mines 307 Mineral Processing 309

SUMMARY 310
TERMS TO REMEMBER 310
EXERCISES 310
SUGGESTED READINGS/REFERENCES 311
NETNOTES 311

CHAPTER 13

Energy Resources—Fossil Fuels 313

Oil and Natural Gas 314

Formation of Oil and Gas Deposits 314 Oil and Gas Migration 316 The Time Factor 316

Supply and Demand for Oil and Natural Gas 317

Oil 317 U.S. Oil Supplies 317 Natural Gas 318 Future Prospects 319 Enhanced Oil Recovery 321 Geopressurized Natural Gas and Other Alternate Gas Sources 321

Conservation 322

Oil Spills 323

LIVING GEOLOGY BOX 13: Energy Prices, Energy Uses 324

Coal 326

Formation of Coal Deposits 326 Coal Reserves and Resources 327 Limitations on Coal Use 328 Gasification 328 Liquefaction 328

Environmental Impacts of Coal Use 329

Sulfur in Coal 329 Ash 329

Coal-Mining Hazards and Environmental Impacts 329

Oil Shale 332

Tar Sand 334

SUMMARY 335 TERMS TO REMEMBER 335 EXERCISES 335 SUGGESTED READINGS/REFERENCES 336 **NETNOTES 336**

CHAPTER 14

Energy Resources—Alternative Sources 337

Nuclear Power—Fission 338

Fission—Basic Principles 338 The Geology of Uranium Deposits 340 Extending the Nuclear Fuel Supply 341 Concerns Related to Nuclear Reactor Safety 342 Concerns Related to Fuel Handling 344 Radioactive Wastes 344

Risk Assessment, Risk Projection 345

Concluding Observations 346

Nuclear Power—Fusion 346

Solar Energy 348

Solar Heating 348 Solar Electricity 350

Potential Environmental Impacts of Large-Scale Commitment to Solar Electricity 351

Solar Energy Summary 351

Geothermal Power 352

The Geothermal Resource 352 Applications of Geothermal Energy 352 Environmental Considerations of Geothermal Power 354

Limitations on Geothermal Power 354 Alternative Geothermal Sources 355 Summary of Geothermal Potential 355

Hydropower 355

Limitations on Hydropower Development 355

Tidal Power 357 Wind Energy 358

LIVING GEOLOGY BOX 14: The Educational Bill 360

Biomass 362

Alcohol as Fuel 362 Biogas 363

SUMMARY 363

TERMS TO REMEMBER 364

EXERCISES 364

SUGGESTED READINGS/REFERENCES 365

NETNOTES 365

SECTION FIVE

Waste Disposal

CHAPTER 15

Waste Disposal 367

Solid Wastes—General 368

Municipal Waste Disposal 369

Open Dumps 369 Sanitary Landfills 370 Incineration 372 Ocean Dumping 372

Reducing Waste Volume 374

Handling (Nontoxic) Organic Matter 375 Recycling 375

LIVING GEOLOGY BOX 15: Decisions, Decisions 378

Other Options 379

Liquid-Waste Disposal 379 Secure Landfills 380 Deep-Well Disposal 380 Other Strategies 382

Sewage Treatment 382

Septic Systems 382

Municipal Sewage Treatment 383

The Ghost of Toxins Past: Superfund 385

Radioactive Wastes 386

Radioactive Decay 386 Effects of Radiation 387 Nature of Radioactive Wastes 388 Historical Suggestions: Space, Ice, and Plate

Tectonics 390

Seabed Disposal 390

Bedrock Caverns for Liquid Waste 390

Bedrock Disposal of Solid High-Level Wastes 391

Waste Isolation Pilot Plant (WIPP) 392 The Long Road to Yucca Mountain 392 No High-Level Radioactive Waste Disposal Yet 395

SUMMARY 396

TERMS TO REMEMBER 397

EXERCISES 397

SUGGESTED READINGS/REFERENCES 397

NETNOTES 398

CHAPTER 16

Water Pollution 399

General Principles 400

Geochemical Cycles 400

Residence Time 400

Residence Time and Pollution 402

Point and Nonpoint Pollution Sources 402

Industrial Pollution 403

Inorganic Pollutants—Metals 403

Other Inorganic Pollutants 405

Organic Compounds 405

Problems of Control 406 Thermal Pollution 407

Organic Matter 408

Nature and Impacts 408

Biochemical Oxygen Demand 411

Eutrophication 411

Agricultural Pollution 412

Fertilizers 412

LIVING GEOLOGY BOX 16: Clogging with Kindness? 414

Sediment Pollution 415

Herbicides and Pesticides 416

Reversing the Damage—Surface Water 417

Dredging 418

Physical Isolation or Chemical Treatment

of Sediments 418

Decontamination; Aeration 418

Groundwater Pollution 418

The Surface—Ground Water Connection Explored 419

Reversing the Damage—Ground Water 422

In Situ Decontamination 422

Decontamination After Extraction 423

Damage Control by Containment—The Rocky

Mountain Arsenal 423

New Technology Meets Problems from the Past:

California Gulch Superfund Site, Leadville, Colorado 424

SUMMARY 426

TERMS TO REMEMBER 427

EXERCISES 427

SUGGESTED READINGS/REFERENCES 428

NETNOTES 428

CHAPTER 17

Air Pollution 429

Atmospheric Chemistry—Cycles and Residence

Times 430

Costs of Air Pollution 430

Types and Sources of Air Pollution 432

Particulates 433

Carbon Gases 433

Sulfur Gases 434

Nitrogen Gases 436

Ozone and Chlorofluorocarbons (CFCs) 437

Lead 439

Other Pollutants 441

Acid Rain 442

The Nature of Acid Rain 442

Regional Variations in Rainfall Acidity

and Impacts 442

LIVING GEOLOGY BOX 17: Indoor Air Pollution? 446

Air Pollution and Weather 447

Thermal Inversion 447

Impact on Precipitation 449

Toward Air-Pollution Control 450

Air-Quality Standards 450

Control Methods 450

Automobile Emissions 452

Cost and Effect 452

SUMMARY 455

TERMS TO REMEMBER 455

EXERCISES 455

SUGGESTED READINGS/REFERENCES 456

NETNOTES 456

SECTION SIX

Other Related Topics

CHAPTER 18

Environmental Law 457

Resource Law: Water 457

Surface-Water Law 458

Groundwater Law 459

Resource Law: Minerals and Fuels 460

Mineral Rights 460

Mine Reclamation 460

International Resource Disputes 461

Law of the Sea and Exclusive Economic

Zones 461

Antarctica 462

Pollution and Its Control 463

A Clean Environment—By What Right? 463

Water Pollution 464

Air Pollution 465

Waste Disposal 465

The U.S. Environmental Protection Agency 467

Defining Limits of Pollution 468

The Canadian Environmental Protection Act 468

International Initiatives 469

Cost-Benefit Analysis 470

Problems of Quantification 470

Cost-Benefit Analysis and the Federal

Government 471

Laws Relating to Geologic Hazards 471

Construction Controls 472

Other Responses to Earthquake Hazards 472

Flood Hazards, Flood Insurance 474

Problems with Geologic-Hazard Mitigation Laws 474

The National Environmental Policy Act (1969) 475

LIVING GEOLOGY BOX 18: Floodplain? What Floodplain? 476

SUMMARY 479
TERMS TO REMEMBER 479
EXERCISES 479
SUGGESTED READINGS/REFERENCES 480
NETNOTES 480

CHAPTER 19

Land-Use Planning and Engineering Geology 481

Land-Use Planning—Why? 482 Conversion of Rural Land 482 Some Considerations in Planning 482

Land-Use Options 484 Multiple Use 484 Sequential Use 484

The Federal Government and Land-Use Planning 485

Maps as a Planning Tool 486

Engineering Geology—Some Considerations 490

The Role of Testing and Scale Modeling 492

Case Histories, Old and New 495 The Leaning Tower of Pisa 496

LIVING GEOLOGY BOX 19: How Green Is My—Golf Course? 497

The Panama Canal 498
The Rotterdam Subway, Holland 499
Dams and Their Failures 499
The St. Francis Dam 500
Other Examples and Issues 500

SUMMARY 503 TERMS TO REMEMBER 503 EXERCISES 503 SUGGESTED READINGS/REFERENCES 503 NETNOTES 504

APPENDIX A

Geologic Time, Geologic Process Rates 505

Introduction 505

Relative Dating 505

Arranging Events in Order 505 Correlation 506 Uniformitarianism 507

How Old Is the Earth? 507

Early Efforts 507 The Nineteenth-Century View 508 Radiometric Dating 508

The Discovery of Radioactivity 508 Radioactive Decay and Dating 508 Choice of an Isotopic System 509 Radiometric and Relative Ages Combined 509

The Geologic Time Scale 510

Geologic Process Rates 511

Examples of Rate Determination 511 The Danger of Extrapolation 511

SUMMARY 512 Terms to remember 512 Suggested readings/references 512

APPENDIX B

Introduction to Topographic and Geologic Maps and Satellite Imagery 513

Maps and Scale 513

Topographic Maps 513

Contour Lines, Contour Intervals 513 Other Features on Standard Topographic Maps 513 Obtaining Topographic Maps 514

Geologic Maps 515

Basic Concepts Related to Geologic Maps 515 Interpretation from Geologic Maps— Examples 517 Cross Sections 518 Obtaining Geologic Maps 521

Remote Sensing and Satellite Imagery 521 Landsat Images and Applications 521 Radar Imaging 523 Imaging Spectroscopy 523

TERMS TO REMEMBER 525 SUGGESTED READINGS/REFERENCES 525 NETNOTES 526

APPENDIX C

Mineral and Rock Identification 527

Mineral Identification 527 A Note on Mineral Formulas 527 Rock Identification 528

APPENDIX D

Units of Measurement—Conversions 533

GLOSSARY 535 INDEX 541