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Preface

With statistical mechanics being one of the oldest branches of theoretical physics,
going well back to the end of the nineteenth century, when the two great pioneers,
Ludwig Boltzmann (1844-1906) in Graz, Munich and Vienna and J. Willard Gibbs
(1839-1903) at Yale laid the foundations for the molecular approach to equilibrium
and the statistical approach to many particle systems via ensemble theory,
respectively, it seems a precarious task to endeavour to compose a textbook for a
modern course in statistical physics, that will render homage to the past, summarise
the exponential growth in the second half of the twentieth century — in particular with
respect to critical phenomena in equilibrium statistical mechanics and the quantum
foundations of transport processes and response theory in non-equilibrium statistical
mechanics — to the student body of the twenty-first century, which typically has a
two-semester slot in the graduate curriculum reserved for this topic. All this in
contrast to electrodynamics and quantum mechanics, which is usually being taught in
two rounds, each having two semesters available. While in these areas there is a
rather common consensus about what should be taught, backed up by ‘standard texts’
in these fields — my own favourites being “Jackson” and “Messiah” — no such
consensus exists with respect to statistical mechanics, usually named statistical
physics these days, a pity, since the mechanical basis (classical or quantal) of the
subject, as noticeable not only from the oeuvre of the pioneers mentioned above, but
also stressed in little ‘jewels’ like Paul and Tatiana Ehrenfest’s “The Conceptual
Foundations of the Statistical Approach in Mechanics” (Leipzig, 1912, Cornell,1959)
is often blatantly ignored. Instead, a great many modern texts commence with a
résumé of macroscopic thermodynamics, after which a connection with the phase-
space quantity InQ is postulated and away we go. Needless to say that statistical
mechanics is meant to provide the microscopic basis of all many-body systems,
gases, liquids and condensed matter, of which the ensuing thermodynamic properties
are established and form a basic part. ’

Yet, a text on statistical mechanics should not be just a text on many-body or
condensed-matter physics, for which many excellent books are available; we mention
e.g. Mahan’s book “Many Particle Physics” of which an up-to-date third edition
recently saw the light. While such books use statistical mechanics, part of which
could be included in a statistical mechanics book as ‘illustrations’ of its principles, it
is these principles which should be the expounded in a true text on the subject. The
challenge to the writer is then how many illustrations or applications should be
included. Obviously, the list is endless and a quick glance through half a dozen
recent books reveals instantly the ‘hobbies’ of the authors.
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viii Preface

This, then, brings me to my own views on what should be in a textbook on
statistical mechanics, aimed at a two semester course. Given the fact that there is no a
priori consensus the book should have sufficient material, so that a choice can be
made as to what will be taught in a given year at a given place. Thus the book can
have 900 pages, although only 600 or so can be taught. Even so, the foundations of
the subject should not be undercut and more or less standard topics in equilibrium
statistical mechanics, such as mean field theory, cluster and virial expansions, phase
transitions, critical exponents, renormalization, quantum liquids, etc., to mention just
a few, should be presented. In non-equilibrium material there is even less consensus,
but most will agree that there should be an account of Boltzmann’s H-theorem,
classical transport theory and the hydrodynamic equations, the basis of quantum
transport as contained in Pauli’s and Van Hove’s master equations, linear and
nonlinear response theory, Brownian motion and other stochastic processes. For the
rest the field is wide open and I have not hesitated to include my own preferences.
Where I have been inspired by several textbooks, which I have from time to time
recommended as reading material for my classes, I have made ample reference to
these texts; however, I have always gone back to the original sources.

So let me present in this “a propos” a synopsis of my own evolution in this area.
My course-packet at the Free University of Amsterdam included a full year in
statistical mechanics, given by the late C.C. Jonker, who held ‘the’ chair in
theoretical physics, as it was customary in those days; he certainly was overburdened
and therefore took recourse to simply presenting the underground lectures in this area
given in 1944 by his tutor, H.A. Kramers of the University of Leiden during World
War II, when all university classes were suspended. They were excellent lectures! To
our surprise these lectures were largely published in 1954 by D. ter Haar, who had
also attended the underground lectures in 1944, in book-form: “Elements of
Statistical Mechanics”, (Rinehart & Co.) . Rightly he writes in his foreword, that “it
is far from a platitude to say that it (the book) would never have been written but for
Professor Kramers.” My own pre-1954 lecture notes testify to this truth! In the mean
time my research, which was concerned with fluctuation processes in semiconductors
and photoconductors, turned more and more theoretical and I benefited for the
theoretical part of my thesis from the scrutiny of one of Holland’s most prominent
theorists, the late Prof. H.B.G. Casimir; my interest in statistical mechanics was born.

In 1967 I had the pleasure to teach my first course in the field at the Physics
Department of the University of Minnesota since my colleague Lewis Nosanov was
on a sabbatical. He also introduced me to Van Hove’s profound papers on the Pauli
master equation and on the subject of irreversibility. The next spring I had the
opportunity to discuss with Van Hove his so-called “diagonal singularity” in the
perturbation expansion of the von Neumann equation, to which he attributed the
irreversible character of the master equation, during a stay at the Theoretical Physics
Institute at the University of Utrecht. These events shaped my thinking and I decided
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to forego my experimental endeavours. A brilliant opportunity opened up when I
was offered a post in Physics at the Université de Montréal and as senior researcher
at the Centre de Recherches Mathématiques (CRM). For many years I taught there
courses in equilibrium and non-equilibrium statistical mechanics, and it is there that
most ideas and presentations set forth in this book were developed. However, the
usual conflict between teaching and writing research papers and proposals prevented
me to condense my notes — several versions of which were made available for U. de
M. students — to final book-form. That had to wait until after my second ‘retirement’,
when I resumed among other topics graduate lectures in this field at the University of
Miami. Needless to say, that many subjects had to be thoroughly updated or added.
Nevertheless, the reader will find much of the flavour of my original lectures in this
text and I tend to believe that this text still reflects more than the usual book that my
origins in this field go back to Kramers and through him to the founders. So the
reader will find here Gibbs’ original considerations about entropy in the
microcanonical ensemble, adapted, however, to quantum systems, not found in any
present-day text. For the H-theorem, extended to quantum systems, I have freely
borrowed from Tolman and passages of several older books, like Fowler and Fowler-
Guggenheim, where still relevant, have been included. In the early days of my studies
I profited much from Sommerfeld’s book on the topic (Vol. 5 of his series on
Theoretical Physics) and from Schrodinger’s little but revealing book on “Statistical
Thermodynamics”, which used and explained in detail the Darwin-Fowler procedure
to obtain the Boltzmann, Bose-Einstein and Fermi-Dirac distributions, all based on
the microcanonical ensemble, which is the only ensemble that connects directly to
classical mechanics via Poincaré invariants and Liouville’s equation of 1838. Yet the
emphasis in this book is on quantum statistics, and a replacement of the phase space
by the appropriate Hilbert space is found on the earliest pages. Later on the Fock
space and the occupation-number formalism, commonly called the second
quantization procedure, is introduced, given that many-body Hamiltonians of
strongly interacting particles can only properly be described with creation and
annihilation operators. Since the typical student who takes a course in statistical
physics has not yet had an exposure to advanced quantum courses or quantum-field
theory, these developments are set forth in detail. For its introduction I still find
Dirac’s book, fourth edition (1958) one of the best sources.

This brings me to the organization of this text. Both the division on equilibrium
statistical mechanics and on non-equilibrium statistical mechanics have three main
parts each, A-C and D-F, respectively. Part A deals with the general principles of
many-particle systems. There are five chapters, the first one of which is of an
introductory nature, dealing with the purpose of statistical mechanics, my philosophy
on the subject and a bit of thermodynamics, whereby we emphasize the fact that
Gibbs’ point of departure basically (may) conflict(s) with the standard views
cherished in macroscopic thermodynamics, as set forth for example in Callen’s book
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on the subject. We introduce classical and quantum ensembles, the a-space for
‘mesoscopic’ variables as found with van Kampen and in the classical text on non-
equilibrium thermodynamics by de Groot and Mazur and other places, with emphasis
on the microcanonical ensemble. Also, elementary and not-so-elementary topics in
probability theory are discussed: transforms, generating functions, cumulants, etc. In
Chapter II we thoroughly discuss the statistics of closed systems and in chapter III we
deal with thermodynamics a posteriori, i.e., as a consequence of Gibbs’ approach to
the microcanonical ensemble, leading to the basic result S =kIn AI', where S is the
entropy and Al is the accessible number of quantum states or the microcanonical
partition function. The rest of needed thermodynamics then follows now as a desert,
rather than as usual in the introductory part of a text. We then connect with
Boltzmann’s ideas and the famous relationship S =klogW, as well as Einstein’s
inversion thereof. Next in Chapter IV we introduce the more common and useful
ensembles, the canonical and grand-canonical ensemble. In order to avoid that all this
formalism becomes sterile we liven up the story at this point with realistic
applications of these ensembles and we embark on a variety of simple as well as quite
complex topics, including the 1D Ising model, the 1D hard-core model of Tonk and
Takahashi, dense classical gases involving cluster-integral diagrams, the cumulant
expansion and the virial expansion. To do justice to my heritage I have also included
the essence of Ornstein’s Ph.D. thesis on the derivation of van der Waals’ equation
and van Kampen’s later elaboration. The usual mean-field theories are discussed,
including the Weiss molecular field and the Debye-Hiickel theory for ionized gases.
In the next chapter we make a little excursion into generalized canonical ensembles
and transformation theory, as e.g. found in Miinster’s book; this concludes part A.

In the next part, B, we mainly consider perfect gases and their properties. The
level of difficulty here, initially, is a great step backwards. So be it! It is like the
mid-January thaw that usually appears to cheer up the long winters in Montreal.
However, apart from the elementary (non-existing) Boltzmann gas, we soon go over
to quantum gases and it is here that second quantization is set forth and elaborated.
We discuss Bose-Einstein condensation and the elementary excitations in solids,
phonons and electron-phonon interaction. Part C then contains the most pertinent
theory of modern statistical mechanics, involving quantum systems with strong
interactions, for which a quantum-field formulation is indispensable. We discuss
critical phenomena and phase transitions, renormalization, the 2D Ising model,
quantum liquids, the basis of superconductivity, etc. A part with the diagrammatic
approach to many-body theory has been added for the more advanced student.
Clearly, to do justice to all the developments of the second half of the twentieth
century, for which the names of Wilson, Fisher, Widom, Kadanoff, Stanley, and
many others, stand out, a book of several thousand pages would not suffice. So we
have made a choice — our choice — constantly mindful of Goethe’s words: “in der
Beschrinkung zeigt sich der Meister.”
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Now some words regarding the second division. We begin non-equilibrium
statistical mechanics with what we call “Boltzmann theory”, part D, with the
developments including, however, quantum gases viewed from a semi-classical point
of view. We prove the H-theorem for Boltzmann, B-E and F-D gases. We then
discuss the hydrodynamic equations, near-equilibrium classical transport involving
electrical and thermal conductivity problems, and (a novum perhaps) transport far
from equilibrium, based on the papers of Yamashita and Watanabe, culminating in
the Davydov and Druyvesteyn distributions for hot plasmas and hot electron gases. In
the next part, E, we return to serious quantum developments and we establish the
basis for quantum non-equilibrium irreversible kinetic equations, following the work
of Van Hove, Zwanzig, Fano , Kubo, Mori and others. Also, we discuss linear and
nonlinear response theory, the Wigner formalism and many applications. This
material is based in part on articles by the author and I gratefully acknowledge the
help and papers of my former graduate students and present colleagues P.
Vasilopoulos, M. Charbonneau and A. Barrios. A special section has been devoted to
the meagre foundations of linear response theory, discussed by van Kampen in his
well-known Physica Norvegica paper, and cleared up, or at least elucidated I hope, in
my response in a 1988 paper in the J. of Statistical Physics.

Lastly, part F deals with stochastic processes. I have started with the older ideas
on Brownian motion by Einstein, Smoluwkowski, Kramers, Moyal, and of the Dutch
School with the standard papers of Ornstein and Burger, Uhlenbeck and Ornstein,
Chandrasekhar and others. A short sub-chapter is devoted to spectral analysis and
besides the Wiener—Khintchine theorem, the methods of the ‘short-time average’
(MacDonald, Milatz), of ‘elementary events’ (Campbell, Carson) and the Allen-
variance theorem, suitable for many forms of ‘pathological noise’, do the round. A
single section is devoted to fluctuation processes in solids, to which I have actively
contributed for many years, but, mostly, referral to the literature must suffice. A
further chapter is devoted to continuous stochastic processes and branching processes
and finally there is brief chapter on fluctuations in radiation fields and photons, based
on work by Glauber, Sudarshan, Louisell and others with experimental verification
by Zijlstra’s group on counting statistics in Utrecht. We understand that the usual
curriculum leaves no time for stochastic processes but for the barest principles of
diffusion and Brownian motion, but we feel that stochastic processes, when
microscopically founded as in this text, are an essential part of non-equilibrium
statistical mechanics. Perhaps much of it can be relegated to a special seminar.

Several important topics have not been treated. We mention disordered systems
and percolation theory in equilibrium statistical mechanics and out-of-equilibrium
phase transitions in non-equilibrium theory; we must refer the reader to other texts.

A note on units, quite inconsequential in statistical mechanics, is in order. With
rare exceptions we employ rationalized Gaussian or Heaviside-Lorentz units. The
integrity of electromagnetic theory is then maintained, but the equations ‘look like’ as
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in the Systéme International; the S-I proponent only has to stick in & and g at
appropriate places and remove some ‘c’s.

Problems have been added at the end of each chapter. They are generally of two
kinds. First, there are exercises to verify some not explicitly derived results as well
as straightforward applications. Secondly there are extensions of the theory for which
space lacked in the chapter proper; the problems are an integral part of the text.

Finally, I have of course a list of acknowledgements. First of all, I thank the
many graduate students who took my courses. If in earlier times I have not given
enough information on certain topics, my hope remains that I have at least been able
to awaken their critical faculties and their interest in this field. I also thank all who
have pointed out errors and who have made known their wishes for improvements.

Since by nature I am more stimulated by auditory than visual inputs, I have
greatly benefited from lectures, colloquia, and presentations at symposia and by the
many visitors received yearly at the CRM. In particular stand out the lectures by the
titulaires of the Chaire André Aisenstadt at the Université de Montréal, notably by
the late Professors Sybren de Groot and Marc Kac. Also, by the visitors Profs. L. de
Sobrino of UBC, S. Fujita of SUNY at Buffalo, Ch. G. van Weert and A.J. Kox of
the Institute for Theoretical Physics at the University of Amsterdam and many others.
I vividly remember and acknowledge the presentation by (and subsequent discussions
with) Prof. E.G.D. Cohen of Rockefeller University in honour of Prof. van Kampen’s
sixtieth birthday at the University of Utrecht. I thank Prof. van Kampen for many
discussions over the years regarding linear response theory and the assumptions
underlying the master equation. And last but not least, I have learned much at the bi-
annual conferences organized by Prof. Joel Lebowitz at Yeshiva University and later
at Rutgers University.

A final word of thanks goes to Professor George Alexandrakis, former Chairman
of the Physics Department of the University of Miami, who welcomed me as an
Adjunct Professor in the department in 2001. I also thank many colleagues in Miami
for discussions, seminars, and their impact; in particular Profs. M. Huerta, J. Nearing,
O. Alvarez, H. Gordon, J. Ashkenazi and F. Zuo. Special thanks are due to Dr. A.
Barrios, Mr. P. Sajnani and to Prof. Olga Korotkova for their critical reading of
various chapters of the Non-equilibrium Part of this text.

Being myself illiterate in computers in the eighties and early nineties, I must
acknowledge the earlier versions of parts of this text, which were ably composed in
Tex or AmTex by Mme Louise Letendre of the CRM. The present version of this
text being sent to the publisher was composed by myself in MS WORD 2003 and
Math-type 5.2c. I am greatly indebted to the Production Manager Ms. Yolande Koh
of WSPC and our Computer Scientist Mr. Marco Monti for their valuable advice.

Miami, Fall 2007
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