Handbook of Pharmaceutical Natural Products

Handbook of Pharmaceutical Natural Products

Volume 2

WILEY-VCH Verlag GmbH & Co. KGaA

The Author

Dr. Goutam Brahmachari Visva-Bharati University Department of Chemistry Santiniketan 731 235 India All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Cover Design Formgeber, Eppelheim
Typesetting Thomson Digital, Noida, India
Printing and Binding T.J. International Ltd. Padstow

Printed in Great Britain Printed on acid-free paper

ISBN: 978-3-527-32148-3

Goutam Brahmachari

Handbook of Pharmaceutical Natural Products Volume 2

Related Titles

G. Eisenbrand, W. Tang

Handbook of Chinese Medicinal Plants

Chemistry, Pharmacology, Toxicology

2010

ISBN: 978-3-527-32226-8

D.G. Barceloux

Medical Toxicology of Natural Substances

Foods, Fungi, Medicinal Herbs, Plants, and Venomous Animals

2008

ISBN: 978-0-471-72761-3

M. Negwer, H.-G. Scharnow

Organic-Chemical Drugs and Their Synonyms

7 Volume Set

2007

ISBN: 978-3-527-31939-8

O. Kayser, W.J. Quax (Eds.)

Medicinal Plant Biotechnology

From Basic Research to Industrial Applications

2007

ISBN: 978-3-527-31443-0

A. Ahmad, F. Aqil, M. Owais (Eds.)

Modern Phytomedicine

Turning Medicinal Plants into Drugs

2006

ISBN: 978-3-527-31530-7

X.-T. Liang, W.-S. Fang (Eds.)

Medicinal Chemistry of Bioactive Natural Products

2006

ISBN: 978-0-471-66007-1

Preface

Nature stands as an inexhaustible source of novel chemotypes and pharmacophores. There has been a history of success in developing drugs from natural sources, particularly in tropical countries such as India, China, Japan, Nepal, Mexico, and South Africa. Nature has been a source of medicinal agents for thousands of years, and an impressive number of modern drugs find their origin in nature. Although the use of bioactive natural products or herbal drug preparations dates back a long time ago, their application as isolated and characterized compounds to modern drug discovery and development started only in the nineteenth century, the dawn of the chemotherapy era. Natural product chemistry has now experienced an explosive and diversified growth, making natural products the subject of much interest and promise in the present-day research directed toward drug design and drug discovery. Natural products and their derivatives from plant, microbial, and marine sources are at various advanced stages of clinical development.

Owing to multidirectional promising aspects, the interest in natural products continues to this very day. The last decade has seen a greater use of botanical products among members of the general public through self-medication than ever before. The use of herbal drugs is once more escalating in the form of complementary and alternative medicine (CAM). This phenomenon has been mirrored by an increasing attention to phytomedicines as a form of alterative therapy by the health professionals; in many developing countries, there is still a major reliance on crude drug preparation of plants used in traditional medicines for their primary health care. The World Health Organization (WHO) estimates that approximately 80% of the world's population relies mainly on traditional medicine, predominantly originated from plants, for their primary health care. The worldwide economic impact of herbal remedies is noteworthy, in the United States alone, in 1997 it was estimated that 12.1% of the population spent \$5.1 billion on herbal remedies. In the United Kingdom, sales of herbal remedies were worth of £75 million in 2002, an increase of 57% over the previous 5 years. Studies carried out in other countries, such as Australia and Italy, also suggest an increasing prevalence of the use of herbal medicines among the adult population. In India and China, respectively, the Ayurvedic and Chinese traditional medicine systems are particularly well developed, and

Handbook of Pharmaceutical Natural Products, Volume 2. Goutam Brahmachari Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32148-3

both have provided potentials for the development of Western medicine. Pharmacognosists employed in different institutions are aware of the changing trends of herbal medications and a number of useful texts on the analysis, uses, and potential toxicities of herbal remedies have appeared recently, which serve as useful guides in pharmacy practice.

Medicinal chemistry of bioactive natural products spans a wide range of fields. including isolation and characterization of bioactive compounds from natural sources, structure modification for optimization of their activity and other physical properties, and also total and semisynthesis for a thorough scrutiny of structureactivity relationship (SAR). It has been well documented that natural products played crucial roles in modern drug development, especially for antibacterial and antitumor agents; however, their use in the treatment of other epidemics such as AIDS, cardiovascular, cancerous, neurodegradative, infective, and metabolic diseases has also been extensively explored. The need for leads to solve such health problems threatening the world population makes all natural sources important for the search of novel molecules. The development of separation techniques and spectroscopic methods allows the isolation of complex mixtures and the characterization of a diversity of complex structures, contributing to the importance of the investigation of terrestrial and marine sources in order to obtain novel bioactive organic compounds coming from nature. Such diversified structural architectures of the isolated molecules presented scientists with unique chemical structures, which are beyond human imagination most of the time, inspired scientists to pursue new chemical entities with completely different structures from known drugs.

The most striking feature of natural products in connection to their long-lasting importance in drug discovery is, thus, their structural diversity that is still largely untapped. Most natural products not only are sterically more complex than synthetic compounds but also differ in regard to the statistical distribution of functionalities. They occupy a much larger volume of the chemical space and display a broader dispersion of structural and physicochemical properties than compounds issued from combinatorial synthesis. It needs to be mentioned that in spite of massive endeavors adopted in recent times for synthesizing complex structures following "diversity-oriented synthesis" (DOS) strategy, about 40% of the chemical scaffolds found in natural products are still absent in today's medicinal chemistry. The chemical diversity and unique biological activities of a wide variety of natural products have propelled many discoveries in chemical and biological sciences, and provided therapeutic agents to treat various diseases as well as offered leads for the development of valuable medicines. Analysis of the properties of synthetic and natural compounds compared to drugs revealed the distinctiveness of natural compounds, especially concerning the diversity of scaffolds and the large number of chiral centers. This may be one reason why approximately 50% of the drugs introduced to the market during the past 20 years are directly or indirectly derived from natural compounds.

The reason for the lack of lead compounds from synthetic libraries in some therapeutic areas such as anti-infectives, immunosuppression, oncology, and metabolic diseases may, thus, be attributed to the different chemical space occupied by

natural products and synthetic compounds. This difference in chemical space makes natural products an attractive alternative to synthetic libraries, especially in therapeutic areas that have a dearth of lead compounds. Natural products have also been used as starting templates in the synthesis of combinatorial libraries. Natural product pharmacophores are well represented in lists of "privileged structures," which makes them ideal candidates for building blocks for biologically relevant chemical libraries. Natural products still constitute a prolific source of novel lead compounds or pharmacophores for medicinal chemistry, and hence, they should be incorporated into a well-balanced drug discovery program. Besides their potential as lead structures in drug discovery, natural products also provide attractive scaffolds for combinatorial synthesis and act as indispensable tools for validation of new drug targets. The diversity of three-dimensional shapes of natural molecules still surpasses that of synthetic compounds, and this ensures that natural products will continue to be important for drug discovery.

The wide range of nature virtually remains unexplored; it is estimated that only 5–15% of the approximately 2 50 000 species of higher plants (terrestrial flora) have been investigated chemically and pharmacologically so far. The marine environment has become an important source of new structures with new activities; hence, marine kingdom stands as an enormous resource for the discovery of potential chemotherapeutics and is waiting to be explored. Another vast untapped area is the microbial world – less than 1% of bacterial species and less than 5% of fungal species are known – and recent evidence indicates that millions of microbial species remain undiscovered. Microbial sources are making an increasingly important contribution to bioactive natural products, and the complex structures of such microbial natural products have fascinated chemists for decades. The future of natural products in drug development thus appears to be a tale of justifiable hope. Faithful drives are needed in more intensified fashion to explore nature as a source of novel and active agents that may serve as the leads and scaffolds for elaboration into urgently needed efficacious drugs for a multitude of disease indications.

The Handbook of Pharmaceutical Natural Products provides a much needed and comprehensive survey of bioactive natural products and their potentials as "drug candidates" for prospective use of such significant molecules in the pharmaceutical world; more than 1500 such individual molecules have been selected and discussed under a total of 950 entries distributed in two volumes of this book. Systematic and trivial names, physical data, source(s), structure, natural derivative(s), and pharmaceutical potentials with an emphasis on the structure-activity relationship of each bioactive molecule are presented in this book; hence, the book would serve as a key reference for recent developments in the frontier research on natural products and would also find much utility to the scientists working in this area. The book serves as a valuable resource for researchers in their own fields to predict promising leads for developing pharmaceuticals to treat various ailments and disease manifestations.

I would like to express my deep sense of appreciation to all of the editorial and publishing staff members of Wiley-VCH, Weinheim, Germany, for their all-round help so as to ensure that the highest standards of publication are maintained in bringing out this book. My effort will be successful only when it is found helpful to the readers at large. Every step has been taken to make the manuscript error-free; in spite of that, some errors might have crept in. Any remaining error is, of course, of my own. Constructive comments on the contents and approach of the book from the readers will be highly appreciated.

Finally, I should thank my wife and my son for their well understanding and allowing me enough time throughout the entire period of writing; without their support, this work would not have been possible.

Santiniketan, September 2009

Goutam Brahmachari

Further Reading

- Balandrin, M.F., Kinghorn, A.D., and Farnsworth, N.R. (1993) Plant-derived natural products in drug discovery and development: an overview, in Human Medicinal Agents from Plants, American Chemical Society Symposium Series, No. 534 (eds A.D. Kinghorn and M.F. Balandrin), American Chemical Society, Washington, DC, pp. 2-12.
- Barnes, J. (2003) Pharmacovigilance: a UK perspective. Drug Safety, 26, 829.
- Brahmachari, G. (2006) Prospects of natural products research in the 21st century: a sketch, in Chemistry of Natural Products: Recent Trends & Developments (ed. G. Brahmachari), Research Signpost, Kerala, India, pp. 1-22.
- Brahmachari, G. (2009) Mother Nature: an inexhaustible source of drugs and lead molecules, in Natural Products: Chemistry, Biochemistry and Pharmacology (ed. G. Brahmachari), Alpha Science International, Oxford, UK, pp. 1-20.
- Burke, M.D., Berger, E.M., and Schreiber, S.L. (2003) Generating diverse skeletons of small molecules combinatorially. Science, 302, 613.
- Buss, A.D. and Waigh, R.D. (1995) Natural products as leads for new phar-

- maceuticals, in Burger's Medicinal Chemistry and Drug Discovery, 5th edn, vol. 1 (ed. M.E. Wolff), John Wiley & Sons, Inc., New York, pp. 983-1033.
- Butler, M.S. (2004) The role of natural product chemistry in drug discovery. I. Nat. Prod., 67, 2141.
- Carte, B.K. (1996) Biomedical potential of marine natural products. Bioscience, 46, 271.
- Cragg, G.M. and Newman, D.J. (2001) Medicinals for the millennia: the historical record. Ann. N.Y. Acad. Sci.,
- Cragg, G.M., Newman, D.J., and Snader, K.M. (1997) Natural products in drug discovery and development. J. Nat. Prod., 60, 52.
- Donia, M. and Hamann, M.T. (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis., 3, 338.
- Haefner, B. (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today, 8, 536.
- Horton, D.A., Bourne, G.T., Smythe, M.L. (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 103, 893.
- Kaul, P.N. and Joshi, B.S. (2001) Alternative medicine: herbal drugs and

- their critical appraisal part II. *Prog. Drug Res.*, **57**, 1.
- Kingston, D.G.I. and Newman, D.J. (2002) Mother nature's combinatorial libraries: their influence on the synthesis of drugs. *Curr. Opin. Drug Discov. Dev.*, **5**, 304.
- Lee, M.-L. and Schneider, G.J. (2001) Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. *Combin. Chem.*, **3**, 284.
- Newman, D.J., Cragg, G.M., and Snader, K.M. (2000) The influence of natural products upon drug discovery. *Nat. Prod. Rep.*, 17, 215.
- Newman, D.J. and Cragg, G.M. (2004) Advanced preclinical and clinical trials of natural products and related compounds from marine sources. *Curr. Med. Chem.*, 11, 1693.

- Newman, D.J., Cragg, G.M., and Snader, K.M. (1997) Natural products in drug discovery and development. *J. Nat. Prod.*, **60**, 52.
- Newman, D.J., Cragg, G.M., and Snader, K.M. (2000) The influence of natural products on drug discovery. *Nat. Prod. Rep.*, 17, 215.
- Newman, D.J., Cragg, G.M., and Snader, K.M. (2003) Natural products as sources of new drugs over the period 1981–2002. *J. Nat. Prod.*, **66**, 1022.
- Shu, Y.-Z. (1998) Recent natural products based drug development: a pharmaceutical industry perspective. *J. Nat. Prod.*, **61** 1053.
- Vuorelaa, P., Leinonenb, M., Saikkuc, P., Tammelaa, P., Rauhad, J.P., Wennberge, T., and Vuorela, H. (2004) Natural products in the process of finding new drug candidates. *Curr. Med. Chem.*, 11, 1375.

Abbreviations

A-549 human lung carcinoma

arachidonic acid AA

ABTS*+ 2,2'-azinobis(3-ethylbenzothiozoline-6-sulfonate) radical cation

ACAT acetyl-CoA:cholesterol acyltransferase

AChE acetylcholinesterase

ACV acyclovir

AD Alzheimer's disease

AIDS acquired immune deficiency syndrome

ALT alanine aminotransferase

AP-1 activator protein

acyclovir/phosphonoacetic acid-resistant Apr **AST** serum aspartate aminotransferase

ATP adenosine triphosphate AZT 3'-azido-3'-deoxythymidine **BChE** butyrylcholinesterase BCS bovine calf serum

BHA 2,6-di-tert-butyl-4-hydroxyanisol BHT 2,6-di-tert-butyl-4-methoxyphenol

BSO buthionine sulfoximine Caco-2 human colon carcinoma Caspase cysteine proteases

 CC_{50} 50% cytotoxic concentration Cdk cyclin-dependent kinase CL chemoluminescence Col-2 human colon carcinoma

COX cyclooxygenase COX-1 cyclooxygenase-1 COX-2 cyclooxygenase-2 CPE cytopathic effect DHF dihydroxyfumaric acid DNA deoxyribose nucleic acid

DOPA 2-amino-3-(3', 4'-dihydroxyphenyl) propionic acid

DPPH 1,1-diphenyl-2-picrylhydrazyl radical

Handbook of Pharmaceutical Natural Products, Volume 2. Goutam Brahmachari

Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 978-3-527-32148-3

EC₅₀ effective concentration (50%)

 ED_{50} effective dose (50%)

EGP-R PTK epidermal growth factor receptor protein tyrosine

kinase

Egr-1 early growth response gene-1
EMSA electrophoretic mobility shift
FAS fungal fatty acid synthase

fMLP formyl-methionyl-leucyl-phenylalanine

5-FU 5-fluorouracil GalN p-galactosamine

GGTase I geranylgeranyltransferase type I

GI₅₀ concentration inhibiting cell growth by 50%

GSK-3 glycogen synthase kinase-3
GST glutathione S-transferase
HBeAg hepatitis B virus e antigen
HBsAg hepatitis B virus surface antigen

HBV hepatitis B virus

hCMV human cytomegalovirus HCT-8 human ileocecal carcinoma HCT-116 human colon tumor cells

HCV hepatitis C virus
HDAC histone deacetylase
HDM house dust mite

HEMn human epidermal melanocytes Hep-G2 human hepatocellular carcinoma

β-HEX β-hexosaminidase

12-HHTrE 12-hydroxyheptadecatrienoic acid

HIF-1 hypoxia-inducible factor-1

HIV human immunodeficiency virus

HIV-1/2-RT human immunodeficiency virus type-1/2 reverse

transcriptase

HLE human leucocyte elastase HNE human neutrophil elastase HPC human prostate cancer

HPLF human periodontal ligament fibroblasts

HPV human papilloma virus
HSV herpes simplex virus
HSV-1 herpes simplex virus type 1
HSV-2 herpes simplex virus type 2

HUVEC human umbilical vein endothelial cell HUVEC human umbilical venous endothelial cell

 $\begin{array}{ll} \text{IBMX} & \text{3-isobutyl-1-methylxanthine} \\ \text{IC}_{50} & \text{inhibitory concentration (50\%)} \\ \text{ICE} & \text{interleukin-1}\beta \text{ converting enzyme} \\ \end{array}$

ICM-1 intercellular adhesion molecule-1

IFN-γ interferon-γ IKK IμB kinase IL-6 interleukin-6

inos inducible nitric oxide synthase inhibitory subunit of NF- κ B INK c-Jun NH₂-terminal kinase

K-562 human chronic myelogenous leukaemia cell
 KB human oral epidermoid carcinoma cell
 L1210 lymphocytic murine leukaemia cell

L5178 mouse lymphoma

LD₅₀ lethal dose (50%) concentration N^{ω} -monomethyl-L-arginine human colon adenocarcinoma

LOX lipoxygenase LPS lipopolysaccharide

LRSA linezolid-resistant methicillin-resistant Staphylococcus aureus

LTB₄ leukotriene B₄

Lu-1 human lung carcinoma

MAPK mitogen-activated protein kinase MCF-7 human breast adenocarcinoma

MDA malondialdehyde MDR multiple-drug resistant

MIC minimum inhibitory concentration
MLC minimum lethal concentration
MLCR mixed lymphocyte culture reaction

MMP matrix metalloproteinase

MRSA methicillin-resistant Staphylococcus aureus
MRSE methicillin-resistant Staphylococcus epidermidis
MSSA methicillin-susceptible Staphylococcus aureus
MSSE methicillin-susceptible Staphylococcus epidermidis
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium

NAC N-acetyl-L-cysteine

NADPH nicotinamide adenine dinucleotide phosphate (reduced)

NBT nitroblue tetrazolium

NCI National Cancer Institute

NCI-H187 human lung cancer cells

NFAT nuclear factor of activated T-cells

NF-นB nuclear factor kappaB NGF nerve growth factor

NIDDM noninsulin-dependent diabetes mellitus

NIK NF-xB-inducing kinase

NO nitric oxide

NQO1 NAD(P)H:quinine oxidoreductase

NSCLC non-small-cell lung cancer 6-OHDA 6-hydroxydopamine

OVCAR-8 ovarian cell line

P-388 lymphoid murine leukaemia cell

PA phosphatidic acid PAA phosphonoacetic acid PAF platelet-activity factor

PARP-1 poly(ADP-ribose)polymerase-1 PC-3 human prostrate cancer cell

PDF peptide deformylase
PEP prolyl endopeptidase
PGE2 prostaglandin E2
PKC protein kinase C
PLC phospholipase C

PMA phorbol 12-myristate 13-acetate

PP-1 protein phosphatase 1 PP-2A protein phosphatase 2A

PRSP penicillin-resistant Streptococcus pneumoniae PSSP penicillin-susceptible Streptococcus pneumoniae

PTK protein tyrosin kinase PTPase protein tyrosine phosphatase

QRSA quinolone-resistant Staphylococcus aureus
Quin-R quinolone-resistant Streptococcus pneumoniae

REV regulation of virion expression
RocB didesmethyl-rocaglamide B
ROS reactive oxygen species
RSV respiratory syncytial virus
SAR structural activity relationships

SI selectivity index

SK-MEL-5 human malignant melanoma cell line

SPA scintillation proximity assay sPLA₂ secretory phospholipase A₂ SSAR succinic semialdehyde reductase

STZ streptozotocin

SV40 transformed fibroblast cells

TEAC trolox equivalent antioxidant capacity

TI therapeutic index
TMV tobacco mosaic virus
TNF-α tumor necrosis factor-alpha

TPA 12-O-tetradecanoylphorbol-13-acetate

TRAF tumor necrosis factor (TNF) receptor-associated factor

TRAIL TNF-related apoptosis-inducing ligand

Trolox 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

TRP-2 tyrosinase-related protein-2

TSP-1 throbospondin-1

TXB₂ thromboxane B₂

U46619 9,11-dideoxy-11α,9α-epoxymethanoprostagrandin

VCAM-1 vascular cell adhesion molecule-1 VEGF vascular endothelial growth factor

VISA vancomycin-intermediate Staphylococcus aureus

VRE vancomycin-resistant Enterococcus

Contents

Preface VII

Abbreviations XIII

Chapters	Entries	Pages
A	Abacopterins A–D — Azoxybacilin	1
В	Ballotenic acid and ballodiolic acid — 7-n-Butyl-6,8-	
	dihydroxy-3(R)-pent-11-enylisochroman-1-one	67
C	Cadiyenol — Cytotrienin	107
D	Daedalin A — Dzununcanone	207
E	Eckol — Exiguaflavanones A and B	271
F	F390 — Fuzanin D	315
G	Gaboroquinone A — Gypsosaponins A-C	341
Н	Halidrys monoditerpene — Hyrtios	
	sesterterpenes 1–3	373
I	IC202A, B, and C — Ixerochinolide	417
J	Jacarelhyperols A and B — Juglanins A and B	439
K	Kadlongilactones A and B — Kweichowenol B	449
L	Laccaridiones A and B — Lyratols C and D	465
M	Maackiaflavanones A and B — Myrsinoic	
	acids A, B, C, and F	507
N	Nalanthalide — Nymphaeols A–C and	
	isonymphaeol B	589
O	Oblonganoside A — Oxypeucedanin hydrate	
	acetonide	611
P	Pacificins C and H — 6- and 8-(2-Pyrrolidinone-5-yl)-	
	(–)-epicatechin	631
Q	Quassimarin — Quillaic acid glycosidic ester	689
R	Ravenic acid — Rubrisandrin A	697
S	Salaspermic acid — Syncarpamide	715

Handbook of Pharmaceutical Natural Products, Volume 2. Goutam Brahmachari Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32148-3