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Preface

In May 2012, the International Centre for Mathematics Sciences (ICMS) in Edinburgh
hosted the workshop Boundary Value Problems for Linear Elliptic and Integrable PDEs:
Theory and Computation. This workshop brought together a small group of mathemati-
cians interested, from several different perspectives, in the solution of boundary value
problems, namely the type of problems modeled by partial differential equations (PDEs)
that are most commonly arising in applications.

This meeting focused in particular on the applications of the so-called unified transform
(also referred to as the Fokas transform or the method of Fokas) to the analysis and numer-
ical modeling of boundary value problems for linear and integrable nonlinear PDEs and
on the closely related boundary element method, a well-established numerical approach
for solving linear elliptic PDEs. The latter method can be viewed as the counterpart in
the physical space of the numerical implementation of the unified transform, which is
formulated in the spectral (Fourier) space.

This book was conceived during the workshop mentioned above and collects the re-
sults of the exchanges of ideas fostered by the meeting. The chapters are closely related
and, when put together, paint a picture of the state of the art in the advances and applica-
tions of the unified transform as well as its relation with the boundary element method.

It is divided in three main parts. Part I contains new theoretical results on evolution
and elliptic problems, linear and nonlinear. New explicit solution representations for
several classes of boundary value problems are constructed and rigorously analyzed.

Part I, at the center of the book, is a detailed overview of variational formulations for
elliptic problems, building up to placing the unified transform approach in this classical
context, alongside the boundary element method, and stressing its novelty.

Part IIT presents recent numerical applications based on the boundary element method
and on the unified transform.

Xi
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Chapter 1
Introduction

A. S. Fokas and B. Pelloni

1.1 = Boundary Value Problems

In 1747, d’Alembert derived the wave equation, which was the first partial differential
equation (PDE) in the history of mathematics. Soon after, d’Alembert and Euler discov-
ered a general method for constructing large classes of solutions, namely the method of
separation of variables. Bernoulli introduced the infinite sine series and Euler discovered
the standard formula for the coefficients of a Fourier series. Fourier inaugurated in 1807
the era of linearization. In 1814 Cauchy wrote as essay on using complex variables for
the evaluation of certain integrals. In 1828 Green introduced the powerful approach of
integral representations that can be obtained via Green’s functions. Separation of vari-
ables led to the spectral analysis of ordinary differential operators and to the solution of
PDE:s via a transform pair. The prototypical such pair is the Fourier transform; variations
include the sine, the cosine, and the Laplace and Mellin transforms.

In the second half of the 20th century it was realized that certain nonlinear evolution
PDEs, called integrable, can be formulated as the compatibility condition of two linear
eigenvalue equations called a Lax pair and that this formulation gives rise to a method for
solving the initial value problem for these equations. This method is now known as the
inverse scattering transform method. One of us has emphasized that this method is based
on a deeper form of separation of variables [1]. Indeed, the spectral analysis of the spatial
part of the Lax pair yields an appropriate nonlinear Fourier transform pair, whereas the
temporal part of the Lax pair yields the time evolution of the nonlinear Fourier data. In
this sense, in spite of the fact that the inverse scattering transform is applicable to nonlinear
PDE:s, this method still follows the logic of separation of variables.

After the emergence of a method for solving the initial value problem for nonlinear
integrable evolution equations, the most significant outstanding open problem in the anal-
ysis of these equations became the solution of initial-boundary value problems. A general
approach for solving such problems for evolution equations was introduced in [2] and
developed in the work of more than 70 researchers [3]. It is remarkable that these re-
sults have motivated the discovery of a new transform method for solving linear PDEs in
two variables. This method, which is referred to in the current literature as the u#nified
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transform, is based on two novel ideas (steps): (i) perform the simultaneous spectral anal-
ysis of both equations defining the Lax pair of the given PDE—or equivalently of a certain
closed differential one-form (this is to be contrasted with the case of initial value problems,
where the spectral analysis of only the ¢-independent part of the Lax pair is performed),
and (i) analyze a certain global relation between all initial and boundary values. The uni-
fied transform goes beyond separation of variables. Indeed, since it is based on the si-
multaneous spectral analysis of both parts of the Lax pair, it corresponds to the synthesis
as opposed to separation of variables. As a consequence of this fundamental difference,
even in the case of linear PDEs the form of the solution obtained by the unified trans-
form differs drastically from the classical representations. It should be noted that the
integral representations obtained via Green’s functions retain global features. Actually,
it was shown in [4, 5] that in the case of linear PDEs an alternative way to construct
the novel integral representations obtained by the unified transform is to use appropriate
contour deformations and Cauchy’s theorem starting from the integral representations
obtained via Green’s functions (instead of performing the simultaneous spectral analysis
of the associated Lax pair). In this sense, the unified transform reveals a deep relationship
between the seminal contributions of Fourier, Cauchy, and Green and furthermore ex-
tends these contributions to integrable nonlinear PDEs. Indeed, it is shown in [6] that
for linear PDEs this method provides a unification as well as a significant extension of
the classical transforms, of the method of images, of the Green’s function representations
and of the Wiener-Hopf technique. (The latter technique through a series of ingenious
steps gives rise to a Wiener-Hopf factorization problem, which is actually equivalent to
a Riemann-Hilbert (RH) problem; in the new method, such RH problems can be imme-
diately obtained using the global relation.) Furthermore, the new approach provides an
appropriate “nonlinearization” of some of the above concepts.

For the case of linear elliptic PDEs, a case of great significance in many different areas
of application, one of the most powerful numerical approaches is the so-called boundary
element method. This method, which is well developed and is an established area of ex-
pertise within the numerical analysis community, can be viewed as the counterpart of the
numerical implementation of the unified transform for linear elliptic PDEs. In particu-
lar, both methods are based on variational formulations. For second-order linear elliptic
PDEs, such variational formulations are derived after multiplying by a test function and
integrating by parts or, equivalently, are based on Green’s identities. However, while the
boundary element method is formulated in the physical space, the unified transform is
formulated in the spectral (Fourier) space.

This book summarizes some recent developments and applications of the unified
transform method and presents modern applications of the boundary element method.
The first part of the book is devoted to recent advances in the applications of the unified
transform, for linear and integrable nonlinear PDEs of both evolution and elliptic types.
The second part consists of an important chapter by E. A. Spence that explicitly sets the
stage for variational formulations of both the boundary element and unified transform
methods. The last part of the book presents numerical strategies for elliptic PDEs, based
on either the unified transform or the boundary element method, or the numerical im-
plementation of the unified transform for evolution PDEs.

1.1.1 « Evolution PDEs in One and Two Spatial Dimensions

Linear PDEs with second-order spatial derivatives formulated in one spatial dimension,
with Dirichlet, Neumann, or Robin boundary conditions, can be solved by employing
an appropriate transform pair in the spatial variable. For example, the heat equation on
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the half-line, with either Dirichlet or Neumann boundary conditions, can be solved by
either the sine or the cosine transform.
Indeed, the Dirichlet problem for the heat equation on the half-line

u,=u,, 0<x<oo, 0<t<T, T>0, (1.1)
#(x,0) = uy(x), 0<x< o0, (1.2)
u(0,t)=fo(t), O0<t<T, (1.3)

where #y(x) and fy(¢) have appropriate decay and smoothness, can be solved by the sine
transform:

u(x,t)= %jm e A sin(Ax) [Jw uy(&)sin(A€)dE + XJ;[ e'“s‘fo(s)ds] dA.  (1.4)
0 0

However, the A-integral on the right-hand side of the above expression is ot uniformly
convergent with respect to the parameter x. This lack of uniformity, in addition to ren-
dering such expressions problematic for numerical computations, also makes it difficult to
verify that the solution to an initial-boundary value problem obtained using such a trans-
form is indeed a solution. In this respect we note that the construction of the solution via
any transform method is usually carried out assuming that a solution exists. Thus, unless
one can appeal to PDE existence results, one must verify that the final formula obtained
in this way does indeed satisty the given PDE and the prescribed initial and boundary
conditions. For initial-boundary value problems, this is straightforward, but for initial-
boundary value problems one must overcome the lack of uniform convergence in this
representation of the solution. It is interesting to note that this problem is not addressed
in any of the standard applied texts on boundary value problems for linear PDEs.

It should be emphasized that the problem of lack of uniform convergence occurs in
every nonhomogeneous boundary value problem solved by standard transform methods.

The situation is even less satisfactory for linear PDEs involving third-order spatial
derivatives. A typical example is the Stokes equation on the half-line:

U+t =0 O<xgew, DT, (1.5)

It can be shown that this problem, supplemented with the initial and boundary conditions
(1.2) and (1.3), is well-posed. However, there does not exist an analogue of the sine or
cosine transforms. One may attempt to solve the above problem by a Laplace transform
in ¢, but this approach has several drawbacks. In particular, if #(x,s) denotes the Laplace
transform of #(x,t), then # satisfies

Ao (x,8)+d (x,8)+sd(x,5) = uy(x), 0<x<o0. (1.6)

Thus, in order to construct an appropriate Green’s function for this ODE, one must solve
the homogeneous version of (1.6), that is, the cubic equation

A(s)’ + A(s)+s =0.

In contrast to the above difficulties, the unified transform (a) can be applied to linear
evolution PDEs involving spatial derivatives of any order and (b) yields expressions which
are always uniformly convergent at the boundary.

In particular, for the Dirichlet problem for the heat equation on the half-line, instead
of (1.4), the unified transform method yields

u(x,t) = 2i Um e‘*x-*“do(,l)dx—f e”*‘*"[u‘o(—x)+2iA/;(,12)]dA}, 1.7)
7T aD+

—0OQ



Chapter 1. Introduction

where dD* is the boundary of the region
Dt ={AeC:ImA>0,Re(A?) <0},

#o(A) is the Fourier transform of the initial condition, and f:,(/l) is the following transform
of the boundary condition:

5 T
fo(/l):f e’l’j[)(s)ds.
0

In contrast to (1.4), it is straightforward to verify that the function defined by (1.7) satisfies
the boundary condition at x = 0.

Using Cauchy’s theorem, the contours in (1.7) can be deformed to obtain (1.4). How-
ever, in general it is not possible to deform the contours in the expression obtained by
the new method to obtain an expression involving integrals on the real axis. For example,
such a deformation does not exist for the analogous expression for equation (1.5), which is
consistent with the fact that in this case there does not exist a classical x-transform. Fur-
thermore, even when such a deformation is possible, it appears that the expression for-
mulated in the complex A-plane has both analytical and numerical advantages. Regarding
the latter advantage, we note that at least for those cases that the Fourier transform of the
initial and boundary data can be computed explicitly, the computation of #(x, t) reduces
simply to the computation of an integral in the complex A-plane. This integral contains
the term exp(i Ax), which decays exponentially for large A in the upper-half A plane. In
addition, by an appropriate contour deformation it is possible to map d D to a contour
in C* with the property that that term involving the temporal dependence exp(w(A)z)
also decays exponentially for large ¢. Thus, the numerical computation of this integral is
most efficient; see [7]. The implementation of the unified transform for linear evolution
PDE:s in one and two dimensions was recently reviewed in [8].

In Section 2.1, Mantzavinos uses the heat equation in one and two dimensions as an il-
lustrative example to show that, using the unified transform, it is possible to construct an-
alytic solutions for problems involving nonseparable boundary conditions as well as non-
local constraints. It should be noted that even for the particular cases that the boundary
conditions are separable, the unified transform gives a construction of the relevant spec-
tral representations in a much simpler way than the classical spectral analysis. Actually,
the unified transform provides a new approach to some open problems in spectral analy-
sis. In Section 2.2, Smith illustrates the spectral interpretation of the unified transform,
describing how this method can be viewed as the natural extension of Fourier transform
techniques for non-self-adjoint operators. This section also discusses the spectral mean-
ing of the transform pair defined by the unified transform, using the recent definition of
a new class of spectral functionals that essentially diagonalize the non-self-adjoint spatial
differential operators associated with linear evolution boundary value problems.

A great advantage of the unified transform for linear evolution initial-boundary value
problems is that it provides an algebraic way for eliminating the unknown boundary val-
ues or, more precisely, appropriate transforms of the unknown boundary values. How-
ever, for integrable nonlinear PDEs this elimination is in general not possible. Thus,
for such nonlinear PDEs one has to characterize the so-called generalized Dirichlet-to-
Neumann map, namely characterize the unknown boundary values in terms of the given
initial and boundary data. However, it turns out that for a particular class of boundary
conditions, called linearizable, the algebraic elimination is possible, and hence for the cor-
responding problems the unified transform method is as effective as the classical inverse
scattering transform. Recall that the sine and cosine transforms can be obtained from the
Fourier transform by considering either an odd or an even symmetry. Thus, if an initial
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boundary value problem can be solved by a sine or cosine transform, it can also be solved
by an odd or even extension to the full line via the Fourier transform. The situation is
similar for linearizable integrable PDEs posed on the half-line. For example, linearizable
initial boundary value problems for the nonlinear Schrodinger (NLS) equation (which is a
second-order PDE whose linear version can therefore be solved by an appropriate sine or
cosine transform) can be solved either by the unified transform or by the inverse scatter-
ing transform after an appropriate extension to the full line. However, linearizable initial-
boundary value problems for the Korteweg-deVries (KdV) equation (whose linear version
cannot be solved by an appropriate x-transform) so far can only be solved by the unified
transform. These issues are further discussed in Chapter 3, which discusses in detail the
relation between the two above approaches to the solution of initial-boundary value prob-
lems for the NLS equation on the half-line with linearizable boundary conditions.

1.1.2 = Elliptic PDEs

It is well known that the main difficulty with boundary value problems stems from the
fact that, although the solution representation requires the knowledge of all boundary
values, some of them are not prescribed as boundary conditions. In the theory of elliptic
PDEs, the determination of the unknown boundary values is known as the problem of
characterizing the Dirichlet-to-Neumann map. The global relation provides the starting
point for analytical, rigorous, and numerical characterizations of this map. Regarding
analytical results, we note that for certain simple domains, the unified transform yields
analytical expressions for the unknown boundary values [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20]. Regarding rigorous results, we note that in a series of
important papers, Ashton has shown that the analysis of the global relation provides a
novel approach to obtaining a plethora of rigorous results for linear elliptic PDEs. This
rigorous approach is summarized in Chapter 4. Regarding numerical results, we note that
the unified transform has inspired a novel numerical technique for the determination of
the unknown boundary values [21], [22], [23], [24], [25], [26], [27], (28], [29], [30]. For
elliptic PDEs formulated in the interior of a polygon, the above technique provides the
analogue of the boundary integral method, but now the analysis takes place in the spectral
(Fourier) space instead of the physical space. This technique is summarized in Section
7.1 by Fokas, Iserles, and Smitheman. Furthermore, the first steps toward extending this
technique to the exterior of a polygon are presented in Section 7.2, by Fokas and Lenells.

Part II of the book, by Spence, presents an overview of variational formulations of
second-order linear elliptic PDEs that are based on integration by parts or, equivalently,
on Green’s identities.

The difficulty of treating effectively boundary value problems in the exterior of a
bounded domain is at the heart of Section 7.3, where Chandler-Wilde and Langdon discuss
the applications of the boundary element method to high-frequency problems arising in
acoustics and make connections to the unified transform by analyzing particular instances
of this method for problems of acoustic scattering by diffraction gratings. The practical
problem is the scattering of acoustic waves by an obstacle is naturally formulated as a
boundary value problem in the domain exterior to the obstacle. The efficient solution
of such problems, in particular the resolution of the high-frequency components, is still
a difficult problem, and what is discussed is a state-of-the-art hybrid boundary element
method for it, as well as connections to the unified transform.

The same difficulty is again the main motivation for Section 7.4, where Claeys et al.
consider scalar second-order problems in the exterior of a bounded domain with Dirichlet
boundary conditions on the boundary and formulate two novel well-posed multi-trace
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boundary integral equations for such problems. Compared to conventional single-trace
formulations they offer the advantage of being amenable to operator preconditioning,
which allows greater numerical effectiveness.

The first applications of the unified transform to nonlinear elliptic PDEs were pre-
sented in [31, 32]. In Section 5.1 the results to date on the case of the elliptic sine-Gordon
equations are summarized by Pelloni, who also gives a complete characterization of lin-
earizable boundary conditions for the case of boundary value problems posed in a semi-
infinite strip.

A crucial step in the development of the unified transform was the observation by
Fokas and Gelfand that linear PDEs always admit a Lax pair formulation [33]. This ob-
servation also played a crucial role in the development of a new technique for deriving
transforms, which finally led to the construction by Novikov of the inverse attenuated
Radon transform [34]. It is remarkable that as shown by Trogdon, this formulation is
also useful for the numerical integration of the initial value problem of linear evolution
PDEs. In addition to this result, Trogdon presents in section 8.1 a powerful new tech-
nique for the numerical solution of integrable PDEs based on the numerical integration
of the associated RH formulation.

Conclusions and Open Problems

Following its introduction in [2], the unified transform has been extensively developed,
and it has found applications in surprisingly many and varied mathematical fields. This
book touches upon recent developments and applications.

Several important problems remain open, including the following:

(a) t-periodic boundary conditions. It was noted earlier that initial-boundary value
problems for evolution PDEs on the half-line with linearizable boundary conditions can
be solved via the unified transform as efficiently as initial value problems. Furthermore,
for nonlinearizable boundary conditions which decay for large ¢, the unified transform
yields useful asymptotic information on the large ¢ behavior of the solution. However,
for the physically important case of ¢ -periodic boundary conditions, it is necessary to char-
acterize the Dirichlet-to-Neumann map. Pioneering results in this direction for the NLS
have been obtained in [35, 36, 37]. However, several problems, including the extension
of these results for the case of KdV, remain open.

(b) x-periodic initial conditions. The initial value problem for nonlinear integrable
PDEs with periodic initial conditions can be analyzed via the elegant algebro-geometric
formalism. This involves finite-genus Riemann surfaces and yields finite-dimensional so-
lutions sets [ 38, 39, 40]. Even if these solutions could be made computationally accessible
(41, 42], one still has to answer the important question of the density of these solutions
in an appropriate function space. It has been shown in [43] that this problem belongs to
the linearizable class. However, the relevant implementation of the unified transform in
this case remains open.

(c) Three-dimensional problems. The implementation of the unified transform to lin-
ear evolution PDEs in two spatial dimensions is discussed in the article of Mantzavinos.
Furthermore, the first steps toward the analysis of integrable nonlinear evolution PDEs
in two spatial dimensions have been taken in [44]. However, the associated analysis of
the Dirichlet-to-Neumann map, as well as the implementation of the unified transform
to elliptic PDEs in three dimensions, remain open.

The approach described and applied in the various sections contained in this book
need to be developed further. The articles presented here, together with the extensive



