Handbook of

Numerical
Linear Algebra and

Optimisation

Michael Stevens
Editor

Handbook of

Numerical Linear Algebra
and Optimisation

Michael Stevens
Editor

-

lﬁ}!i)\J v ﬂ r"
P
,'}ﬁ 4 ?%,1

eeeeeeee

AURIS REFERENCE LTD.
London, UK

Handbook of Numerical Linear Algebra and Optimisation

© 2014

Published by

Auris Reference Ltd., UK
www.aurisreference.com

ISBN: 978-1-78154-478-5

Editor: Michael Stevens

Printed in UK
10987654321
Cover Design: Cover Lab

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise without prior written permission of the publisher.

Reasonable efforts have been made to publish reliable data and information, but the
authors, editors, and the publisher cannot assume responsibility for the legality of
all materials or the consequences of their use. The authors, editors, and the publisher
have attempted to trace the copyright holders of all materials in this publication and
express regret to copyright holders if permission to publish has not been obtained. If
any copyright material has not been acknowledged, let us know so we may rectify in
any future reprint.

For information about Auris Reference Ltd and its publications, visit our website
at www.aurisreference.com

Handbook of

Numerical Linear Algebra
and Optimisation

AR, 7 B SE BEPDFIE Ui M) : www. ertongbook. com

Preface

Linear algebra is central to both pure and applied mathematics.
For instance, abstract algebra arises by relaxing the axioms of a
vector space, leading to a number of generalizations. Functional
analysis studies the infinite-dimensional version of the theory of
vector spaces. Combined with calculus, linear algebra facilitates the
solution of linear systems of differential equations. Techniques from
linear algebra are also used in analytic geometry, engineering, physics,
natural sciences, computer science, computer animation, and the social
sciences. Because linear algebra is such a well-developed theory, nonlinear
mathematical models are sometimes approximated by linear ones.

The study of linear algebra first emerged from the study of
determinants, which were used to solve systems of linear equations.
Determinants were used by Leibniz in 1693, and subsequently, Gabriel
Cramer devised Cramer’s Rule for solving linear systems in 1750.
Later, Gauss further developed the theory of solving linear systems
by using Gaussian elimination, which was initially listed as an
advancement in geodesy. The main structures of linear algebra are
vector spaces. Similarly as in the theory of other algebraic structures,
linear algebra studies mappings between vector spaces that preserve
the vector-space structure. When a bijective linear mapping exists
between two vector spaces, we say that the two spaces are isomorphic.
Because an isomorphism preserves linear structure, two isomorphic
vector spaces are “essentially the same” from the linear algebra point
of view. One essential question in linear algebra is whether a mapping
is an isomorphism or not, and this question can be answered by
checking if the determinant is nonzero. If a mapping is not an
isomorphism, linear algebra is interested in finding its range and the
set of elements that get mapped to zero, called the kernel of the
mapping. Again in analogue with theories of other algebraic objects,
linear algebra is interested in subsets of vector spaces that are vector
spaces themselves; these subsets are called linear subspaces. For
instance, the range and kernel of a linear mapping are both subspaces,
and are thus often called the range space and the nullspace; these
are important examples of subspaces. Elements of a general vector

viii Preface

space V may be objects of any nature, for example, functions,
polynomials, vectors, or matrices. Linear algebra is concerned with
properties common to all vector spaces. Since linear algebra is a
successful theory, its methods have been developed and generalized
in other parts of mathematics. In module theory, one replaces the field
of scalars by a ring. The concepts of linear independence, span, basis,
and dimension still make sense. Nevertheless, many theorems from
linear algebra become false in module theory. Numerical linear algebra
1s the study of algorithms for performing linear algebra computations,
most notably matrix operations, on computers. It is often a fundamental
part of engineering and computational science problems, such as
image and signal processing, telecommunication, computational
finance, materials science simulations, structural biology, data mining,
bioinformatics, fluid dynamics, and many other areas. Such software
relies heavily on the development, analysis, and implementation of
state-of-the-art algorithms for solving various numerical linear algebra
problems, in large part because of the role of matrices in finite difference
and finite element methods. Common problems in numerical linear
algebra include computing the following: LU decomposition, QR
decomposition, singular value decomposition, eigenvalues. In the
simplest case, an optimization problem consists of maximizing or
minimizing a real function by systematically choosing input values
from within an allowed set and computing the value of the function.
The generalization of optimization theory and techniques to other
formulations comprises a large area of applied mathematics. More
generally, optimization includes finding “best available” values of
some objective function given a defined domain, including a variety
of different types of objective functions and different types of domains.

More generally, if the objective function is not a quadratic function,
then many optimization methods use other methods to ensure that
some subsequence of iterations converges to an optimal solution. The
first and still popular method for ensuring convergence relies on line
searches, which optimize a function along one dimension. A second
and increasingly popular method for ensuring convergence uses trust
regions. Both line searches and trust regions are used in modern
methods of non-differentiable optimization. Usually a global optimizer
is much slower than advanced local optimizers, so often an efficient
global optimizer can be constructed by starting the local optimizer
from different starting points.

Based on courses taught to advanced undergraduate students,
this book offers a broad introduction to the methods of numerical
linear algebra and optimization.

—FEditor

Contents

Preface

1. Numerical Linear Algebra

« Domain Decomposition Methods * Balancing Domain
Decomposition Method * Coarse Space (Numerical Analysis) *
Domain Decomposition Methods * Fictitious Domain Method *
Mortar Methods * Schur Complement Method ¢ Schwarz
Alternating Method

2. Exchange Algorithms

« Pivot Element * Simplex Algorithm + Bareiss Algorithm °
Bland’s Rule * Criss-Cross Algorithm

3. Least Squares

- Least Squares * Regularized Versions: Tikhonov Regularization
« Coefficient of Determination * Discrete Least Squares Meshless
Method * Explained Sum of Squares ° Fraction of Variance
Unexplained * Gauss—Newton Algorithm ¢ Generalized Least
Squares * Iteratively Reweighted Least Squares * Least Squares
(Function Approximation) ¢ Least Squares Support Vector
Machine * Levenberg—Marquardt Algorithm * Linear Least
Squares (Mathematics) * Moving Least Squares * Non-Linear
Tterative Partial Least Squares * Lack-of-Fit Sum of Squares °
Ordinary Least Squares * Partial Least Squares Regression °
Partition of Sums of Squares * Residual Sum of Squares * Total
Sum of Squares

4. Matrix Decompositions

Block LU Decomposition * Cholesky Decomposition
- Eigendecomposition of a Matrix * Jordan—Chevalley

(vit)

20

50

179

Vi

Contents

Decomposition * LU Decomposition * Polar Decomposition *
Principal Component Analysis * QR Decomposition * Schur
Decomposition * Singular Value Decomposition °* Intuitive
Interpretations

5. Relaxation (Iterative Methods) 288

* Gauss—Seidel Method * Jacobi Method * Matrix Splitting

Bibliography 308
Index 310

Chapter 1

Numerical Linear Algebra

Numerical linear algebra is the study of algorithms for performing
linear algebra computations, most notably matrix operations, on
computers. It is often a fundamental part of engineering and
computational science problems, such as image and signal processing,
telecommunication, computational finance, materials science
simulations, structural biology, data mining, bioinformatics, fluid
dynamics, and many other areas. Such software relies heavily on the
development, analysis, and implementation of state-of-the-art
algorithms for solving various numerical linear algebra problems, in
large part because of the role of matrices in finite difference and finite
element methods.

Common problems in numerical linear algebra include computing
the following: LU decomposition, QR decomposition, singular value
decomposition, eigenvalues.

Domain Decomposition Methods (CH)

Abstract Additive Schwarz Method

In mathematics, the abstract additive Schwarz method, named
after Hermann Schwarz, is an abstract version of the additive Schwarz
method, formulated only in terms of linear algebra without reference
to domains, subdomains, etc. Many if not all domain decomposition
methods can be cast as abstract additive Schwarz method, which is
often the first and most convenient approach to their analysis.

Additive Schwarz Method

In mathematics, the additive Schwarz method, named after
Hermann Schwarz, solves a boundary value problem for a partial

2 Handbook of Numerical Linear Algebra and Optimisation

differential equation approximately by splitting it into boundary value
problems on smaller domains and adding the results.

Overview

Partial differential equations (PDEs) are used in all sciences to
model phenomena. For the purpose of exposition, we give an example
physical problem and the accompanying boundary value problem
(BVP). Even if the reader is unfamiliar with the notation, the purpose
is merely to show what a BVP looks like when written down. (Model
problem) The heat distribution in a square metal plate such that the
left edge is kept at 1 degree, and the other edges are kept at 0 degree,
after letting it sit for a long period of time satisfies the following
boundary value problem:

[ey) + [, (xy) =0
f(0,y) = 1; f(x,0) = f(x,1) = f(1,Ly) =0

where f is the unknown function, f_ and fy . denote the second
partial derivatives with respect to x and y, respectively.

Here, the domain is the square [0,1] x [0,1].

This particular problem can be solved exactly on paper, so there
is no need for a computer. However, this is an exceptional case, and
most BVPs cannot be solved exactly. The only possibility is to use a
computer to find an approximate solution.

Solving on a Computer

A typical way of doing this is to sample f at regular intervals in
the square [0,1] % [0,1]. For instance, we could take 8 samples in the
x direction at x = 0.1, 0.2, ..., 0.8 and 0.9, and 8 samples in the y
direction at similar coordinates. We would then have 64 samples of
the square, at places like (0.2,0.8) and (0.6,0.6). The goal of the
computer program would be to calculate the value of f at those 64
points, which seems easier than finding an abstract function of the
square. There are some difficulties, for instance it is not possible to
calculate f_(0.5,0.5) knowing f at only 64 points in the square. To
overcome this, one uses some sort of numerical approximation of the
derivatives. We ignore these difficulties and concentrate on another
aspect of the problem.

Solving Linear Problems

Whichever method we choose to solve this problem, we will need
to solve a large linear system of equations. The reader may recall
linear systems of equations from high school, they look like this:

Numerical Linear Algebra 3

2a + bb = 12 (*)

6a — 3b = -3

This is a system of 2 equations in 2 unknowns (a and b). If we
solve the BVP above in the manner suggested, we will need to solve
a system of 64 equations in 64 unknowns. This is not a hard problem

for modern computers, but if we use a larger number of samples, even
modern computers cannot solve the BVP very efficiently.

Domain Decomposition

Which brings us to domain decomposition methods. If we split the
domain [0,1] X [0,1] into two subdomains [0,0.5] X [0,1] and [0.5,1]
x [0,1], each has only half of the sample points. So we can try to solve
a version of our model problem on each subdomain, but this time each
subdomain has only 32 sample points. Finally, given the solutions on
each subdomain, we can attempt to reconcile them to obtain a solution
of the original problem on [0,1] x [0,1].

Size of the Problems

In terms of the linear systems, we're trying to split the system
of 64 equations in 64 unknowns into two systems of 32 equations in
32 unknowns. This would be a clear gain, for the following reason.
Looking back at system (*), we see that there are 6 important pieces
of information. They are the coefficients of a and b (2,5 on the first
line and 6,—-3 on the second line), and the right hand side (which we
write as 12,—3). On the other hand, if we take two “systems” of 1
equation in 1 unknown, it might look like this:

System 1: 3a = 15
System 2: 6b = —4

We see that this system has only 4 important pieces of information.
This means that a computer program will have an easier time solving
two 1X1 systems than solving a single 2X2 system, because the pair
of 1x1 systems are simpler than the single 2x2 system. While the
64x64 and 32x32 systems are too large to illustrate here, we could
say by analogy that the 64x64 system has 4160 pieces of information,
while the 32x32 systems each have 1056, or roughly a quarter of the
64%64 system.

Domain Decomposition Algorithm

Unfortunately, for technical reason it is usually not possible to
split our grid of 64 points (a 64%x64 system of linear equations) into
two grids of 32 points (two 32Xx32 systems of linear equations) and

4 Handbook of Numerical Linear Algebra and Optimisation

obtain an answer to the 64x64 system. Instead, the following algorithm
is what actually happens:

1) Begin with an approximate solution of the 64x64 system.

2) From the 64%x64 system, create two 32x32 systems to improve
the approximate solution.

3) Solve the two 32x32 systems.

4) Put the two 32x32 solutions “together” to improve the
approximate solution to the 64x64 system.

5) If the solution isn’t very good yet, repeat from 2.

There are two ways in which this can be better than solving the
base 64%x64 system. First, if the number of repetitions of the algorithm
is small, solving two 32x32 systems may be more efficient than solving
a 64%x64 system.

Second, the two 32%x32 systems need not be solved on the same
computer, so this algorithm can be run in parallel to use the power
of multiple computers.

In fact, solving two 32x32 systems instead of a 64x64 system on
a single computer (without using parallelism) is unlikely to be efficient.
However, if we use more than two subdomains, the picture can change.
For instance, we could use four 16x16 problems, and there’s a chance
that solving these will be better than solving a single 64x64 problem
even if the domain decomposition algorithm needs to iterate a few
times.

A Technical Example

Here we assume that the reader is familiar with partial differential
equations.

We will be solving the partial differential equation

u, +u, = f ()

The boundary condition is boundedness at infinity.

We decompose the domain R? into two overlapping subdomains
H, = (- ©,1] x R and H, = [0,+ «) X R. In each subdomain, we will
be solving a BVP of the form:

u(})m + u(J)yy = f in Hj

u (x,y) = &)

where x, = 1 and x, = 0 and taking boundedness at infinity as

the other boundary condition. We denote the solution u"’ of the above
problem by S(f,g). Note that S is bilinear.

Numerical Linear Algebra 5

The Schwarz algorithm proceeds as follows:

1. Start with approximate solutions u‘"’ and u‘*’, of the PDE
in subdomains H, and H, respectively. Initialize & to 1.

2. Calculate u‘/’, = S(f,u(a‘ﬁk(xj)) with j = 1,2.

3. Increase k by one and repeat 2 until sufficient precision is
achieved.

Balancing Domain Decomposition Method

In numerical analysis, the balancing domain decomposition method
(BDD) is an iterative method to find the solution of a symmetric
positive definite system of linear algebraic equations arising from the
finite element method. In each iteration, it combines the solution of
local problems on non-overlapping subdomains with a coarse problem
created from the subdomain nullspaces. BDD requires only solution
of subdomain problems rather than access to the matrices of those
problems, so it is applicable to situations where only the solution
operators are available, such as in oil reservoir simulation by mixed
finite elements. In its original formulation, BDD performs well only
for 2nd order problems, such elasticity in 2D and 3D. For 4th order
problems, such as plate bending, it needs to be modified by adding
to the coarse problem special basis functions that enforce continuity
of the solution at subdomain corners, which makes it however more
expensive. The BDDC method uses the same corner basis functions
as, but in an additive rather than multiplicative fashion. The dual
counterpart to BDD is FETI, which enforces the equality of the solution
between the subdomain by Lagrange multipliers. The base versions
of BDD and FETI are not mathematically equivalent, though a special
version of FETI designed to be robust for hard problems has the same
eigenvalues and thus essentially the same performance as BDD.

The operator of the system solved by BDD is the same as obtained
by eliminating the unknowns in the interiors of the subdomain, thus
reducing the problem to the Schur complement on the subdomain
interface. Since the BDD preconditioner involves the solution of
Neumann problems on all subdomain, it belongs to class of Neumann—
Neumann methods, named so because they solve a Neumann problem
on both sides of the interface between subdomains.

In the simplest case, the coarse space of BDD consists of functions
constant on each subdomain and averaged on the interfaces. More
generally, on each subdomain, the coarse space needs to only contain
the nullspace of the problem as a subspace.

6 Handbook of Numerical Linear Algebra and Optimisation

BDDC

In numerical analysis, BDDC (balancing domain decomposition
by constraints) is a domain decomposition method for solving large
symmetric, positive definite systems of linear equations that arise
from the finite element method. BDDC is used as a preconditioner
to the conjugate gradient method. A specific version of BDDC is
characterized by the choice of coarse degrees of freedom, which can
be values at the corners of the subdomains, or averages over the edges
or the faces of the interface between the subdomains. One application
of the BDDC preconditioner then combines the solution of local
problems on each subdomains with the solution of a global coarse
problem with the coarse degrees of freedom as the unknowns. The
local problems on different subdomains are completely independent
of each other, so the method is suitable for parallel computing. With
a proper choice of the coarse degrees of freedom (corners in 2D,
corners plus edges or corners plus faces in 3D) and with regular
subdomain shapes, the condition number of the method is bounded
when increasing the number of subdomains, and it grows only very
slowly with the number of elements per subdomain. Thus the number
of iterations is bounded in the same way, and the method scales well
with the problem size and the number of subdomains.

History

BDDC was introduced by Dohrmann as a simpler primal
alternative to the FETI-DP domain decomposition method by Farhat
et al. The name of the method was coined by Mandel and Dohrmann,
because it can be understood as further development of the BDD
(balancing domain decomposition) method. The same method was also
proposed independently by Fragakis and Papadrakakis under the
name P-FETI-DP, and by Cros, which, however, was not recognised
for some time. See for a proof that these are all actually the same
method as BDDC. Mandel, Dohrmann, and Tezaur proved that the
eigenvalues of BDDC and FETI-DP are identical, except for the
eigenvalue equal to one, which may be present in BDDC but not for
FETI-DP, and thus their number of iterations is practically the same.
Much simpler proofs of this fact were obtained later by Li and Widlund
and by Brenner and Sung.

Coarse Space

The coarse space of BDDC consists of energy minimal functions
with the given values of the coarse degrees of freedom. This is the
same coarse space as used for corners in a version of BDD for plates

Numerical Linear Algebra 7

and shells. The difference is that in BDDC, the coarse problem is used
in an additive fashion, while in BDD, it is used a multiplicatively.

A Mechanical Description

The BDDC method is often used to solve problems from linear
elasticity, and it can be perhaps best explained in terms of the
deformation of an elastic structure. The elasticity problem is to
determine the deformation of a structure subject to prescribed
displacements and forces applied to it. After applying the finite element
method, we obtain a system of linear algebraic equations, where the
unknowns are the displacements at the nodes of the elements and the
right-hand side comes from the forces (and from nonzero prescribed
displacements on the boundary, but, for simplicity, assume that these
are zero).

A preconditioner takes a right hand side and delivers an
approximate solution. So, suppose we have an elastic structure divided
into nonoverlappling substructures, and, for simplicity, suppose the
coarse degrees of freedom are only subdomain corners. Suppose forces
applied to the structure are given.

The first step in the BDDC method is the interior correction,
which consists of finding the deformation of each subdomain separately
given the forces applied to the subdomain except at the interface of
the subdomain with its neighbours. Since the interior of each subdomain
moves independently and the interface remains at zero deformation,
this causes kinks at the interface. The forces on the interface necessary
to keep the kinks in balance are added to the forces already given
on the interface. The interface forces are then distributed to the
subdomain (either equally, or with weights in proportion to the stiffness
of the material of the subdomains, so that stiffer subdomains get more
force).

The second step, called subdomain correction, is finding the
deformation for these interface forces on each subdomain separately
subject to the condition of zero displacements on the subdomain
corners. Note that the values of the subdomain correction across the
interface in general differ.

At the same time as the subdomain correction, the coarse correction
is computed, which consists of the displacement at all subdomain
corners, interpolated between the corners on each subdomain separately
by the condition that the subdomain assumes the same shape as it
would with no forces applied to it at all. Then the interface forces,
same as for the subdomain correction, are applied to find the values

8 Handbook of Numerical Linear Algebra and Optimisation

of the coarse correction at subdomain corners. Thus, the interface
forces are averaged and the coarse solution is found by the Galerkin
method. Again, the values of the coarse correction on subdomain
interfaces is in general discontinuous across the interface.

Finally, the subdomain corrections and the coarse correction are
added and the sum is averaged across the subdomain interfaces, with
the same weights as were used to distribute the forces to the subdomain
earlier. This gives the value of the output of BDDC on the interfaces
between the subdomains. The values of the output of BDDC in the
interior of the subdomains are then obtained by repeating the interior
correction.

In a practical implementation, the right-hand-side and the initial
approximation for the iterations are preprocessed so that all forces
inside the subdomains are zero. This is done by one application of the
interior correction as above. Then the forces inside the subdomains
stay zero during the conjugate gradients iterations, and so the first
interior correction in each application of BDDC can be omitted.

Coarse Space (Numerical Analysis)

In numerical analysis, coarse problem is an auxiliary system of
equations used in an iterative method for the solution of a given larger
system of equations. A coarse problem is basically a version of the
same problem at a lower resolution, retaining its essential
characteristics, but with fewer variables. The purpose of the coarse
problem is to propagate information throughout the whole problem
globally.

In multigrid methods for partial differential equations, the coarse
problem is typically obtained as a discretization of the same equation
on a coarser grid (usually, in finite difference methods) or by a Galerkin
approximation on a subspace, called a coarse space. In finite element
methods, the Galerkin approximation is typically used, with the coarse
space generated by larger elements on the same domain. Typically,
the coarse problem corresponds to a grid that is twice or three times
coarser.

In domain decomposition methods, the construction of a coarse
problem follows the same principles as in multigrid methods, but the
coarser problem has much fewer unknowns, generally only one or just
a few unknowns per subdomain or substructure, and the coarse space
can be of a quite different type that the original finite element space,
e.g. piecewise constants with averaging in balancing domain

