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The book tells about the relation of systems of linear inequali-
ies to convex polyhedra, gives a description of the set of all
solutions of a system of linear inequalities, analyses the ques-
ions of compatibility and incompatibility; finally, it gives an
nsight into linear programming as one of the topics in the
heory of systems of linear inequalities. The last section but one.,
~gives a proof of the duality theorem of linear programming.
The book is intended for senior pupils and all amateur

mathematicians.
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Preface

First-degree or, to use the generally accepted term, linear inequal-
“ities are inequalities of the form

ax+by+c=>0

(for simplicity we have written an inequality in two unknowns x
and y). The theory of systems of linear inequalities is a small but
most fascinating branch of mathematics. Interest in it is to a consider-
able extent due to the beauty of geometrical content, for in geomet-
rical terms giving a system of linear inequalities in two or three un-
knowns means giving a convex polygonal region in the plane or a
convex polyhedral solid in space, respectively. For example, the
study of convex polyhedra, a part of geometry as old as the hills,
turns thereby into one of the chapters of the theory of systems of
linear inequalities. This theory has also some branches which are
near the algebraist’s heart; for example, they include a remarkable
analogy between the properties of linear inequalities and those of
systems of linear equatgons (everything connected with linear equations
has been studied for a long time and in much detail).

Until recently one might think that linear inequalities would for-
ever remain an object of purely mathematical work. The situation
has changed radically since the mid 40s of this century when there
arose a new area of applied mathematics— linear programming—
with important applications in the economy and engineering. Linear
programming is in the end nothing but a part (though a very impor-
tant one) of the theory of systems of linear inequalities.

It is exactly the aim of this small book to acquaint the reader
with the various aspects of the theory of systems of linear inequali-
ties, viz. with the geometrical aspect of the matter and soine of the
~methods for solving systems coinnected with that aspect, with certain

purely algebraic properties of the systems, and with questions of
linear programming. Reading the book will not require any know-
ledge beyond the school course in mathematics.

A few words are in order about the history of the questions to

. be elucidated in this book.

Although by its subject-matter the theory of linear inequalities
should, one would think, belong to the most basic and elementary
parts of mathematics, until recently it was studied relatively little.
From the last years of the last century works began occasionally to
appear which elucidated some properties of systems of linear inequal-
ities. In this connection one can mention the names of such mathe-

1

o



1aticians as H. Minkowski (one of the greatest geometers of the
~end of the last and the beginning of this century especially well
“known for his works on convex sets and as the creator of “Minkow-
- skian geometry”), G.F. Voronoi (one of the fathers of the “Pe-
tersburg school of number theory”), A. Haar (a- Hungarian mathe-
matician who wen recognition for his works on “group integration”),
- H. Weyl (one of the most outstanding mathematicians of the first half
of this century; one can read about his life and work in the pamph-
let “Herman Weyl” by 1. M. Yaglom, Moscow, “Znanie”, 1967).
Some of the results obtained by them are to some extent or other ref-
lected in the present book (though without mentioning the authors’
~ names).

It was not until the 1940s or 1950s, when the rapid growth of applied
disciplines (linear, convex and other modifications of “mathematical
programming”, the so-called “theory of games”, etc.) made an advanced
and systematic study of linear inequalities a necessity, that a really
intensive development of the theory of systems of linear inequali-
ties began. At present a complete list of books and papers on inequal-
ities would probably contain hundreds of titles.

1. Some Facts from Analytic Geometry

. Operations on points. Consider a plane with a rectangular coordi-
nate system. The fact that a point M has coordinates x and y in
this system is written down as follows:

M =(x, y) or simply M(x, y)

The presence of a coordinate system allows one to perform some
operations ®n the points of the plane, namely the operation of
additiot of points_and the operation of multiplication of a point by a
number. : :

The addition of points is defined in threufcr-)il;()‘vx‘;irﬁg‘”vaé“y':"if Mi=—t

(x1, y1) and M, = (x,, y,), then
M; +M; = (X1 + X3, y; + ¥5)

E'ﬁhu_s the addition of points is reduced to the addition of their

similar coordinates.

~ The visualization of this operation is very simple (Fig. 1); the

point M, + M, is the fourth vertex of the parallelogram construc-

ted on the segments OM; and OM, as its sides (O is the origin of
dinates). M;, 0, M, are the three remaining vertices of the

parallelogram.




The same can be said in another way: the point M; + M, is
obtained by translating the point M, in the direction of the segment
OM, over a distance equal to the length of the segment.

The multiplication of the point M(x,y) by an arbitrary number
k s carrled out according to the following rule:

kM = (kx, ky)
The visualization of this operation is still 51mpler than that of the
addition; for k> 0 the point M’ = kM lies on the ray OM, with

4 M+ M
",

/) 7
Fig. 1
OM' =k x OM; for k <0 the point M’ lies on the extension of
the ray OM beyond the point O, with OM’ = |k| x OM (Fig. 2).
- The derivation of the above visualization of both operations
will provide a good exercise for the reader*.

Y 4
T kM (k>0)

kM (k<)
Fig. 2

The operations we have introduced are very convenient to use
in interpreting geometric facts in terms of algebra. We cite some
examples to show this.

* Unless the reader is familiar with the fundamentals of vector theory.
In—vector- Werauors are known to _mean the following:
the point M, + M, is the end oﬂhe#ecmLOM + OM , and the point kM
is the end of the vector k x OM (on condition tTlaTThﬁelpLQ is_the
beginning of this vector).
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(1) The segment MM, consists of all points of the form
SlMl e 52M2

where sy, s, are any two nonnegative numbers the sum of which
equals 1.

Here a purely geometrlc fact, the belonging of a point to the
segment M, M,, is written in the form of the algebraic relation
M = s;M,; + s,M, with the above constraints on s;, s,.

4,

S
X
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Fig. 3 Fig. 4

To prove the above, consider an arbitrary point M on the
segment M; M,. Drawing through M straight lines parallel to OM,
and OM, we obtain the point N, on the segment OM, and the
point N, on the segment OM, (Fig. 3). Let

M,M MM
MM’ 2T MM,

5=

the numbers s, and s, being nonnegative and their sum equalling 1.
From the similarity of the corresponding triangles we find

ON, M,M ON, MM
oM, MM, U OM, MM, =2

which yields N; =s;M,;, N, =s,M,. But M = N, + N,, hence
M = siM; + s,M,. We, finally, remark that when the point M
runs along the segment M;M, in the direction from M, toward
M,, the number s, runs through all the values from 0 to 1.
Thus proposition (1) is proved.

(2) Any point M of the straight line MM, can be represented as

tM, + (1 — )M,

where t is a number.
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In fact, if the point M lies on the segment M;M,, then our
atement follows from that proved above. Let M lie outside of
segment M, M,. Then either the point M, lies on the segment
5 (as in Flg 4) or M, lies on the segment MM,. Suppose,
xample, that the former is the case. Then, from what has
- proved,

Miy=sM+(1-sM, (0O<s<l)

A
A+SB //,
// /’/
/
/ B
/ ,/
// /"’, 0
e
sB
Fig. 5 Fig. 6

Hence
M=1M,—1=SM, =M, +(1 - )M,

where t = 1/s. Let the case where M, lies on the segment MM 1
- be considered by the reader.

(3) When a parameter s increases from 0 to oo, the pm‘nt sB
_runs along the ray OB* and the point A + sB is the ray emerging
from A in the direction of OB. When s decreases from 0 to — o,
~ the points sB and A + sB run along the rays that are supplementary

to those indicated above. To establish this, it is sufficient to look
at Figs. 5 and 6. ;

It follows from proposition (3) that, as s. changes from

— o0 to + oo, the point A + sB runs along the straight line
passing through A4 and parallel to OB.

The operations of addition and multiplication by a number can,
of course. be performed on points in space as well. In that cas¢,

“* The point B is supposed to be different from the origin of coor-
dinates 0.
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by definition,
M, + M, =(x; + X3, 1 + 2 21 +22)
kM = (kx, ky, kz)

“All the propositions proved above will obviously be true for
space as well.

We conclude this section by adopting a convention which will
later help us formulate many facts more clearly and laconically.
Namely, if # and £ are some two sets of points (in the plane
or in space), then we shall agree to understand by their “sum”
A + %L a set of all points of the form K + L where K is an

arbitrary point in " and L an arbitrary point in 2.

~ :
/
// // //
/ / / g
Kby Fig. 8

Special notation has been employed in mathematics for a long
time to denote the belonging of a point to a given set; namely,
in order to indicate that a point M belongs to a set .# one
writes Me.# (the symbol e standing for the word “belongs”).
So A +Z is a set of all points -of the form K+ L where
KeA and Le .

From the visualization of the addition of points a simple rule
for the addition of the point sets # and £ can be given.
This rule is as follows. For each point Ke . # a set must be
constructed which is a result of translating & along the segment
OK over a distance equal to the length of the segment and
then all sets obtained in this way must be united into one. It is
the latter that will be A + 2.

We shall cite some examples.

1. Let a set A" consist of a single point K whereas & is any
set of points. The set K +.% is a result of translating the set &
along the segment OK over a distance equal to its length (Fig. 7).
In particular, if % is a straight line, then K+ & is a straight
line parallel to . If at the same time the line & passes through
the origin, then K + & is a straight line parallel to % and passing
through the point K (Fig. 8).
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2. # and £ are segmeénts (in the plane or in space) not
parallel to each other (Fig. 9). Then the set 4" + £ is a paral-
lelogram with sides equal and parallel to 4" and & (respectively).
What will result if the segments 4" and & are parallel?

3. A is a plane-and & is a segment not parallel to it. The
set A + .2 is a part of space lying between two planes parallel
to A" (Fig. 10). .

Fig. 9 Fig. 10

4. A and £ are circles of radii r; and r, with centres P,
and P, (respectively) lying in the same plane n. Then A4 + & is
a circle of radius r, + r, with the centre at the point P; + P,
lying in a plane parallel to © (Fig. 11).

2°. The visualization of equations and inequalities of the first
degree in two or three unknowns. Consider a first-degree equation
in two unknowns x and y:

ax+by+c=0 (1)
Interpreting x and y as coordinates of a point in the plane, it is
natural to ask the question: What set is formed in the plane by
the points whose coordinates satisfy equation (1), or in short what
set of points is given by equation (1)?
We shall give the answer though the reader may already know
it: the set of points given by equation (1) is a straight line in the
plane. Indeed, if b # 0, then equation (1) is reduced to the form

y=kx+p

and this equation is known to give a straight line. If, however,
b =0, then the equation is reduced to the form

X=

and gives a straight line parallel to the axis of ordinates.

13
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A similar question arises concerning the inequality
ax+by+c¢=0 (2)

~ What set of points in the plane is given by inequality (2)? ;
* Here again the answer is very simple. If b # 0, then the inequali-
ty is reduced to one of the following forms

y=kx+p or y<kx+p

It is easy to see that the first of these inequalities is satisfied by

Fig. 11

all points lying “above” or on the straight line y = kx + p and the
second by all points lying “below” or on the line (Fig. 12). If,
however, b=0, then the inequality is reduced to one of the
following forms

x>l orax<h

the first of them being satisfied by all points lying to the “right”
of or on the straight line x =h and the second by all points to
the “left” of or on the line (Fig. 13).

Thus equation (1) gives a straight line in the coordinate plane
and inequality (2) gives one of the two half-planes into which
this line divides the whole plane (the line itself is considered to
belong to either of these two half-planes).

We now want to solve similar questions with regard to the
equation

ax +by+cz+d=0 3)
and the inequality :

ax + by +cz+d>0 . 4
of course, here x, y, z are interpreted as coordinates of a poiht
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in space. It is not difficult to foresee that the following result will
be obtained.

Theorem. Equation (3) gives a plane in space and inequality (4)
gives one of the two half-spaces into which this plane divides the
whole space (the plane itself is considered to belong to one of
these two half-spaces).

Proof. Of the three numbers a, b, ¢ at least one is different

Fig. 12

from zero; let ¢ # 0, for example. Then equation (3) is reduced
to the form

z=kx+1ly+p (5)

Denote by & the set of all points M (x, y, z) which satisfy (5).
Our aim is to show that £ is a plane.

Find what points in & belong to the yOz coordinate plane.
To do this, set x =0 in (5) to obtain

z=ly+p (6)

Thus the intersection of % with the yOz plane is the straight line u
given in the plane by equation (6) (Fig. 14).

Similarly, we shall find that the intersection of % with the xOz
plane is the straight line v given in the plane by the equation

z=kx+p 7)

Both lines u and v pass through the point P (0, O, p).

Denote by m the plane containing the lines u and v. Show
that m belongs to the set Z.

In order to do this it is sufficient to establish the following
fact, viz. that a straight line passing through any point 4 € v and
parallel to u belongs to Z.

First find a point B such that OB|u. The equation z = Iy + p
gives the straight line u in the yOz plane; hence the equation z = ly
gives a straight line parallel to u and passing through the origin

15
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(it is shown as dotted line in Fig. 14). We can take as B the
point with the coordinates y =1, z=1[ which lies on this line.
An arbitrary point A € v has the coordinates. x, 0, kx + p. The
point B we have chosen has the coordinates 0, 1, [. The straight
_line passing through 4 and parallel to u consists of the points
A+sB=(x, 0, kx +p)+s(0, 1, )=
o= (x, s kx+p+sl)
where s is an arbitrary number (see proposition (3) of section 1°).

0 =~ /x
.z:</7\ /z>f7 ,
St e
z=h
Fig. 13 Fig. 14

It is easy to check that the coordinates of a point A+ sB
satisfy equation (5), i.e. that 4 + sBe . This proves that the
plane © belongs wholly to the set Z.

It remains to make the last step, to show that & coincides
with m or, in other words, that the set % does not contain any
points outside .

To do this, consider three points: a point M (X, Vo, Zo)
lying in the plane m, a point M’ (xo, Vo, Zo +€) lying “above”
the plane (¢ > 0), and a point M” (Xo, Yo, Zo — €) lying “below” 1
(Fig. 15). Since Men, we have zo = kxo + lyo + p and hence

Zo+€>kxo+ lyo+p
zZo — &< kxg+1lyo+p

This shows that the coordinates of the point M’ satisfy the
strict inequality ;

z>kx+1y+p
and the coordinates of the point M” satisfy the strict inequality

z<kx+ly+p
16




