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Preface to the Series
in Information and Computational Science

Since the 1970s, Science Press has published more than thirty volumes in its series Monographs
in Computational Methods. This series was established and led by the late academician, Feng
Kang, the founding director of the Computing Center of the Chinese Academy of Sciences. The
monograph series has provided timely information of the frontier directions and latest research
results in computational mathematics. It has had great impact on young scientists and the entire
research community, and has played a very important role in the development of computational
mathematics in China.

To cope with these new scientific developments, the Ministry of Education of the People’s
Republic of China in 1998 combined several subjects, such as computational mathematics, nu-
merical algorithms, information science, and operations research and optimal control, into a new
discipline called Information and Computational Science. As a result, Science Press also reor-
ganized the editorial board of the monograph series and changed its name to Series in Informa-
tion and Computational Science. The first editorial board meeting was held in Beijing in Sep-
tember 2004, and it discussed the new objectives, and the directions and contents of the new
monograph series.

The aim of the new series is to present the state of the art in Information and Computational
Science to senior undergraduate and graduate students, as well as to scientists working in these
fields. Hence, the series will provide concrete and systematic expositions of the advances in in-
formation and computational science, encompassing also related interdisciplinary developments.

I would like to thank the previous editorial board members and assistants, and all the
mathematicians who have contributed significantly to the monograph series on Computational
Methods. As a result of their contributions the monograph series achieved an outstanding reputa-
tion in the community. I sincerely wish that we will extend this support to the new Series in In-
formation and Computational Science, so that the new series can equally enhance the scientific
development in information and computational science in this century.

Shi Zhongci
2005.7






Preface

For numerical methods, the stability is a crucial issue in the sense that the unstable
numerical methods are useless in practical applications. The Lax’s principle[™! for
initial problems states that under the consistent condition, the convergence and
the stability are equivalent to each other. When the truncation errors are derived,
which are not very difficult, the errors of the numerical solutions can be obtained.
However, the final numerical solutions also include rounding errors, which are related
to stability. Since for the given algorithms of partial differential equations (PDE),
the stability proof is often difficult and challenging, error analysis provides an easier
pathway to answer the stability question.

Let us consider the finite element method (FEM) for elliptic boundary problems.
The uniformly V;, elliptic inequality is important for a priori error estimates!4?,
and it also implies stability, because the solutions of elliptic problems are not very
sensitive to the perturbation of the data involved. The linear algebraic equations
obtained from the FEM can be solved by the direct methods such as Gaussian
elimination, or iterative methods such as the conjugate gradient methods, or the
multigrid methods. Since all computations are completed in computer, the rounding
errors are inevitable. Since the double precision has only 16 significant decimal
digits, the final numerical solutions must have the extra errors from rounding errors.
Even when certain software, such as the computer algebra software Mathematica,
is used with more working digits, it is also finite. The more working digits are
used, the more CPU time and the more computer storage are needed. Hence, the
perturbation errors, such as rounding errors, are important to numerical methods for
PDE.

Consider the overdetermined linear algebraic equations resulting from numerical
PDE,

Fx =b», (0.0.1)

where F € R™*" m > n, and € € R™ and b € R™ are the unknown and the known
vectors, respectively. The traditional condition number in the 2-norm is defined by

Cond = —22 , (0.0.2)

Omin

where omax and omin are the maximal and the minimal singular values, respectively.
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The new effective condition number in this book is defined by

(L]

Ominl|Z]|’

Cond_eff = (0.0.3)

where ||| is the 2-norm. When there exist the perturbation of b and F, the practical
computation for (0.0.1) is carried out by

F(z + Az) = b+ Ab, (0.0.4)
(F + AF)(z + Az) = b+ Ab, (0.0.5)

where AF € R™*™ (m > n), Az € R™ and Ab € R™. Suppose that AF is small
so that rank(F) = rank(F + AF) = n. For (0.0.4) (i.e., AF = 0), there exist the
bounds of relative errors,
|Az|
[l

Equations (0.0.6) indicate the errors from the perturbation, e.g., from the rounding

lab]|  [Az]
<Cond X ——, —
[[B]] [l

< Cond_eff x % (0.0.6)

errors. More specifically, the relative errors of the solution & may be enlarged from
the rounding errors by a factor of Cond, and Cond has often been used to provide
a stability analysis of numerical methods (see Wilkinson [226]). In fact, since the
upper bound Cond in (0.0.6) is the worst case, it rarely happens in most PDE prob-
lems. The error bound of & can be improved by Cond_eff and shown in (0.0.6).
Cond_eff in (0.0.3) is smaller, or even much smaller than Cond in (0.0.2). Such a
conclusion has been proved by the analysis and computation in this entire book.
Since the algorithms of (0.0.3) are so simple, easy and straightforward in computa-
tion, Cond_eff is strongly recommended, to replace Cond. This is one objective of
this book.

The idea of effective condition number was first studied in Rice [186], and Chan
and Foulser [27], and the formula (0.0.3) of Cond_eff was first used in Christiansen
and Saranen [38]. Only a few papers (27, 37, 38, 51] follow this trend for stability
analysis. Recently, we have carried out a systematic study on effective condition
number of various numerical methods for PDE and the boundary integral equation
(BIE). Interestingly, the Cond_eff is significantly smaller than Cond for numerical
methods of PDE, but only fairly smaller than Cond for numerical methods of BIE[8].
Comparing (0.0.3) with (0.0.2), the minimal singular value o,y is crucial for both
Cond_eff and Cond, but the maximal singular value oy,.x is necessary only to Cond.
Hence when omax is large, Cond is large, but Cond_eff may remain small. This
happens for the finite element method (FEM), the finite difference method (FDM),
the Trefftz method (TM) and the spectral method (SM) for elliptic boundary value
problems. In particular, when the maximal boundary length h of grids and elements
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is small in FDM and FEM, the traditional condition number Cond is large (or even
huge for local refinements of partitions). However, the effective condition number
is small, to display a good stability of numerical methods. This is particularly
important to the local refinements used in FDM and FEM for singularity problems
in Li [116], explored in Chapters 8 and 9.

The previous study [27, 37, 186] for effective condition number was active until
Banoczi et al. [14] in 1998, where a number of numerical examples of linear algebraic
equations display insignificance of effective condition number. In fact, Cond._eff
is significant for numerical PDE, not for linear algebraic equations!!34. For the
perturbations in (0.0.5), from Section 1.8 there exists the bound,

|Az| _ Cond.eff |1+ /5 |AF| ||Ab
< Cond X ———+ —— | ,
[l 1-46 2 £l ol

(0.0.7)

where § = ||F!||||AF| < 1, and F' is the pseudo-inverse of F. In (0.0.7), the

condition number is defined by Cond=|| F't|||| F||, and the effective condition number

b A
by Cond_eff =|| F"]I "_” For linear algebraic equations, the rounding errors “||bl|)|“

llll AR
are smaller than the errors ”” F||”

method, so that the condition number plays a dominant role in (0.0.7). However, for

Ab
numerical PDE, the discretization and the truncation errors 1Ab]

14

|—|||AF—IT|“’ so that the effective condition number plays a dominant role in (0.0.7).

Here, let us mention the most important references of condition number. The
definition of the traditional condition number was given in Wilkinson [227], and then
used in many books and papers, see Atkinson (3], Atkinson and Han [5], Christiansen
[36], Cucker et al. [42], Geurts [64], Golub and van Loan [66], Laub [108], Parlett
[180], Quarteroni and Valli [184], and Schwarz [191]. The condition number for
eigenvalues was reported in Parlett [180], and Frayssé and Toumazou [61], and more
discussions on condition number were given in Gulliksson and Wedin [71], Elsner et
al. [55], Rice [185] and Rohn [187].

This book is a summary of our recent study of effective condition numbers, and

of solution methods, such as Gaussian elimination

are lager than

the most significant results are selected from more than twenty papers, published
in international journals in mathematics and engineering. There are a number of
characteristics of this book. The effective condition number is a new criterion for
numerical stability of numerical PDE, and this book covers the newest discover-
ers on this subject. The first characteristics is its novelty. Since the analysis of
effective condition number involves two disciplines: linear algebra and partial differ-
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mulas of Cond and Cond_eff are explored, and error bounds are derived. When the
minimal singular value oy, is infinitesimal, there exists a severe substraction cance-
lation. This is the other stability. The Cond can be regarded as the global stability:
Cond_eff plus the substraction. This chapter provides a new stability analysis on
TSVD and TR for numerical PDE.

Various problems by different numerical methods for different applications demon-
strate the outstanding advantages of the effective condition number over the tradi-
tional condition number.

Zi-Cai Li
Hung-Tsai Huang
Yimin Wei
Alexander H.-D. Cheng
October, 2012
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