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Classification of Electrical
Machines. Mechanical,
Hydraulic and Thermal
Analysis and Design

32 Basic Construction
of Electrical Machines

32-1 Parts of an Elecirical Machine and
Their Functions

In an electrical machine, energy is converted within a space
taken up by an electromagnetic field. The parts that serve
to establish and confine the field may be called active (or
electrical) as they directly contribute to ‘energy conversion.
These are the cores, conductors (coils), and air gaps.

In addition, there are parts which do not contribute to
energy conversion directly, but are essential to the operation
of a machine. They may be called structural (or mechanical)
parts. Among other things, they

(a) hold the stator and rotor in their designated relative
position and ensure (or limit) the desired degrees of freedom;

(b) transfer electric energy between the cores and coils,
on the one hand, and external lines, on the other;

(c¢) transfer mechanical energy between the prime mover
and the driven machine;

(d) provide cooling;

(e) insulate the coil turns from one another, from mecha-
nical parts, and from the cores electrically;

(f) protect the cores and coils against exposure to external
factors (moisture, harmful gases or fumes, and the like) and
prevent ingress of foreign objects inside the machine;

(¢) ensure safety to attending personnel by limiting (or
preventing) access to and contact with rotating or live
parts;

(h) facilitate the installation of a machine at its perma-
nent location. '
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The typical parts of an electrical machine are illustrated
in Fig. 32-1 which shows a salient-pole synchronous machine.
The arrangement shown will be found in most electrical
machines in general.

The active parts are stator winding 7, rotor winding 7,
stator core 2, and rotor core which consists of poles 8 and
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Fig. 32-1 General arrangement of an electrical machine

yoke 18. In the arrangement shown, the magnetic field in
the poles and yoke of the rotor is constant in magnitude and
direction. This implies that these parts are not subject to
cyclic magnetization, so they may be fabricated of solid
(one piece) steel forgings.

In the stator core, the magnetic field varies periodically at
the supply frequency. To minimize hysteresis and eddy-
current losses (see Sec. 31-3), il is built up of insulated
electrical-sheet steel laminations 2 clamped together by
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clamps 50, pressure blocks 4, and keys 5 inserted in annular
recesses in frame 48.

The tangential electromagnetic forces acting on the stator
are mainly applied to the stator teeth (see Sec. 29-3). These
forces are, in the final analysis, transmitted to and absorbed
by the foundation. Their path is from the stator teeth and
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yoke, through keys 51, frame 48, frame feet 79, anchor bolts
25, baseplate 24, to foundation 20. (The electromagne-
tic forces and the forces transmitting external torque via
fixed parts are shown by arrows 53 and 54, respectively, in
Fig. 32-1).

Appreciable electromagnetic forces (especially during
transients) are acting on the coil conductors as well.
To counteract them, the active conductors are anchored
lo slots by wedges 49, whereas the coil ends (over-
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hangs) are held in place by tape or clamps.

The tangential electromagnetic forces acting on the rotor
are mainly applied to the pole-shoes. On the shaft acted
upon by the external torque that balances the torque due to
the tangential electromagnetic forces, the poles are held
by a combination of dovetail joint 23, rotor yoke 18, and
key 16.

Axially, the rotor parts are additionally locked by straps
26 that prevent the poles from moving in the dovetail
joints, and also annular key 75. The rotor is held in its
designated position and permitted to rotate relative to the
stator by axial and radial bearings. The radial bearings in
the design shown in Fig. 32-1 are of the roller type,
13 and 29, held in end shields 6 and 46 by caps 14
and 2.

The weight of the rotor is transmitted to the foundation
via end shields 6 and 46, and frame 48 to which the end
shields are fastened by means of flanges. To the rotor weight
is added the weight of the stator (the respective forces are
shown in Fig. 32-1 by arrows 22).

The flow of electromagnetic power, P.n, across the air
gap separating the cores is shown by arrow 47. For the adopt-
ed sense of rotor rotation, Q, the directions of torques, forces,
and energy fluxes are those existing in the generator mode
of operation.

Mechanical power, P, (the direction of its flow is shown
by arrow 41), is transmitted from the associated prime mover
to the rotor via a chain of mechanically strained rotating
parts. Starting at half-coupling 9, the mechanical power is
transmitted via key 70, through shaft 77 and key 16 to the
rotor, whence it is directed to rotor yoke 18, dovetail joint
23, and poles 8 which are acted upon by the bulk of the
electromagnetic forces (see Sec. 29-3) shown in the cross-
sectional view by arrows 53.

Electric power is conveyed from the stator coils laid in
stator slots by leads 47 to terminals 44 and cables 40.

To the rotor coils, electric power is conveyed over cables,
via conducting segments 30, pig-tails 38, brushes 37 which
are free to move in brush-holders 36, slip-rings 32, slip-
ring leads 33, and leads 27 passing through an opening in
the shaft. Segments 30 are attached over insulating parts to
rocker-arm 39; the slip-rings are press-fitted on sleeve 34
insulated by cylinder 35.
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The total power losses, >, P, are dissipated in the machine
as heat which is abstracted by cooling air flowing in the
direction shown by arrows 52. The static pressure required
to circulate cooling air is produced by axial-flow fan 42.
Air enters the machine by openings in end shield 46, is
directed by baffles 43, scooped by the fan and, on passing
through ventilating ducts in the cores, is expelled from the
machine through openings in end shield 6 and louvres 8.
Many of the baffles, ducts and enclosures (8, 45, 31, and 11)
serve a two-fold function in the machine: they prevent
ingress of foreign objects and water drops and also keep
attending personnel from direct contact with the rotating
and bare live parts.

As a further safety measure, the frame of the machine
must reliably be grounded. To this end, it has grounding
bolt 21. This will prevent an electric shock upon contact
with the machine, should its insulation be damaged.

To facilitate installation at its permanent location, the
machine is fitted with lifting lugs or eyes (at 55 in Fig. 32-1).

As already noted, the arrangement illustrated in Fig. 32-1
is basically common to all rotating electrical machines.
Whatever variations there may be, they will mainly concern
the core shape and the winding circuits. (Various designs
and types will be examined in separate sections and chap-
ters.)

The arrangement and size of the active and mechanical
parts vary with the form of cooling used (see Chap. 37),
the type of enclosure adopted, the type of shaft, and some
other features (see Chap. 33).

32-2  General Requirements for the Construction
of Electrical Machines

The active and mechanical parts of a machine must be
designed, detailed and manufactured so as to meet the re-
quirements of relevant standards, and so that the machine
could perform its designated function adequately.
Among other things, appropriate standards or codes re-
quire that a machine should reliably operate under nominal
service conditions. In the Soviet Union, the limiting service
conditions are taken to be an ambient temperature of +40°C
and an altitude of not over 1 000 m above sea level. Also,
a machine should remain fully serviceable under conditions



16 Part Three. Classification of Electrical Machineg

of overcurrents, overvoltages, excessive rpms, and starting
currents, voltages and electromagnetic torque (in the case
of motors) to the extent likewise specified in applicable
standards or codes.

The choice of materials and dimensions for the active and
mechanical components is decided upon and checked at the
time of electromagnetic design and analysis, insulation
design, stress-strain analysis (Chap. 34), hydraulic design
(Chap. 36), and thermal analysis (Chap. 35). The turn insula-
tion must be designed to withstand the interturn voltage,
and the ground insulation must be able to stand up to the
voltage between the conductors and the grounded core.

The type and form of insulation (insulating and impreg-
nating materials, clearances, radii of curvature and bends,
and the like) must be chosen such that the electric field
strength in the insulation at the highest operating voltage
will not exceed the safe limit and the insulation will retain
its electrical strength for a long time. The insulation must
also be checked and tested for its ability to withstand re-
peated application of atmospheric and switching surges. The
electric strength and insulation resistance of a machine
should be checked at the time of testing the ground and turn
insulation [13]. The insulation is required to pass these
tests without any damage or impairment in quality.

The winding insulation must have ample mechanical
strength so as to withstand all kinds of mechanical forces
during erection and in service (static, impact, vibrational,
etc.). The requirements for the mechanical strength of
insulation are not very stringent, because the electromagne-
tic forces transferred from the conductors to the slot sides in
a tangential direction are insignificant (see Sec. 29-3). The
prevailing factor is the pulsational forces arising from
the interaction of currents with the leakage field, which drive
the conductors against the slot bottom.

The maximum temperature at which a given type of insula-
tion retains its electrical and mechanical strength and dura-
bility (the ability to preserve its properties for a period of
15 to 30 years without noticeable changes) serves as a basis
for dividing all insulating materials into several classes,
such as listed in Table 32-1. In more detail, this matter is
discussed in [13].

The insulation classes listed in Table 32-1 are as follows.

Class A. Cotton, silk, paper, and similar organic materials



