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Preface

The systematic study of matrices began late in the history of mathematics,
but matrix theory is an active area of research now and it has applications in
numerical analysis, control and systems theory, optimization, combinatorics,
mathematical physics, differential equations, probability and statistics, eco-
nomics, information theory, and engineering.

One attractive feature of matrix theory is that many matrix problems
can be solved naturally by using tools or ideas from other branches of math-
ematics such as analysis, algebra, graph theory, geometry and topology. The
reverse situation also occurs, as shown in the last chapter.

This book is intended for use as a text for graduate or advanced under-
graduate level courses, or as a reference for research workers. It is based on
lecture notes for graduate courses I have taught five times at East China
Normal University and once at Peking University. My aim is to provide
a concise treatment of matrix theory. I hope the book contains the basic
knowledge and conveys the flavor of the subject.

When I chose material for this book, I had the following criteria in
mind: 1) important; 2) elegant; 3) ingenious; 4) interesting. Of course, a
very small percentage of mathematics meets all of these criteria, but I hope
the results and proofs here meet at least one of them. As a reader I feel
that for clarity, the logical steps of a mathematical proof cannot be omitted,
though routine calculations may be or should be. Whenever possible, I try
to have a conceptual understanding of a result. I always emphasize methods
and ideas.
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X Preface

Most of the exercises are taken from research papers, and they have
some depth. Thus if the reader has difficulty in solving the problems in
these exercises, she or he should not feel frustrated.

Parts of this book appeared in a book in Chinese with the same title
published by the Higher Education Press in 2008.

Thanks go to Professors Pei Yuan Wu and Wei Wu for discussions on the
topic of numerical range and to Dr. Zejun Huang for discussions on Theorem
1.2 and Lemma 9.13. I am grateful to Professors Tsuyoshi Ando, Rajendra
Bhatia, Richard Brualdi, Roger Horn, Erxiong Jiang, Chi-Kwong Li, Zhi-
Guo Liu, Jianyu Pan, Jia-Yu Shao, Sheng-Li Tan, and Guang Yuan Zhang
for their encouragement, friendship and help over the years. I wish to express
my gratitude to my family for their kindness. This work was supported by
the National Science Foundation of China under grant 10971070.

Shanghai, December 2012 Xingzhi Zhan
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Chapter 1

Preliminaries

Most of the concepts and results in this chapter will be used in the sequel.
We also set up some notation.

We mainly consider complex matrices which include real matrices, of
course. Occasionally we deal with matrices over a generic field. A square
matriz is a matrix that has the same number of rows and columns, while a
rectangular matriz is a matrix the numbers of whose rows and columns may
be unequal. An m x n matrix is a matrix with m rows and n columns. An
n X n matrix is said to be of order n. An m x 1 matrix is called a column
vector, and a 1 x n matrix is called a row vector. Thus vectors are special
matrices.

A matrix over a set () means that its entries are elements of €2. Usually
the set  is a field or a ring. We denote by M, ,(f2) the set of the m x
n matrices over (2. Here the letter M suggests matrix. M, ,(Q2) will be
abbreviated as M, (2). When Q = C, the field of complex numbers, My, »(C)
and M, (C) are simply written as My, and M,, respectively. 2" denotes
the set of n-tuples with components from 2. Unless otherwise stated, the
elements of (2" are written in the form of column vectors so that they can
be multiplied by matrices on the left.

If A is a matrix, A(%, j) denotes its entry in the i-th row and j-th column.
We say that this entry is in the position (7, 7). The notation A = (aij)mxn
means that A is an m xn matrix with A(i, j) = a;;. AT denotes the transpose
of a matrix A. If A € M,, ,, A denotes the matrix obtained from A by taking
the complex conjugate entrywise, and A* denotes the conjugate transpose
of A, ie., A" = (A)T. Thus, if = is a column vector, then z7 and z* are
row vectors. For simplicity, we use 0 to denote the zero matrix, and we use

1



2 1. Preliminaries

I to denote the identity matrix, i.e., the diagonal matrix with all diagonal
entries being 1. Their sizes will be clear from the context.

Denote by diag(ds,...,d,) the diagonal matrix with diagonal entries
di,...,d,. If A;, i = 1,..., k are square matrices, sometimes we use the
notation Ay @ Ay @ -+ - @ Ay to denote the block diagonal matrix

0 As <o 0
diag(A;, Aa,..., Ax) = : : . .
0 0 - Ag
We will use G £ - .- to mean that we define G to be something. This

notation can streamline the presentation. ¢ will denote the empty set, unless
otherwise stated.

1.1. Classes of Special Matrices

Let A € M,. If A*A = AA*, then A is called normal. If A* = A, then
A is called Hermitian. If A* = —A, then A is called skew-Hermitian. If
A*A = I, then A is called unztary. Thus, unitary matrices are those matrices
A satisfying A=! = A*. Obviously, Hermitian matrices, skew-Hermitian
matrices, and unitary matrices are normal matrices; real Hermitian matrices
are just real symmetric matrices, and real unitary matrices are just real
orthogonal matrices. The set of all the eigenvalues of a square complex
matrix A is called the spectrum of A, and is denoted by o(A). Note that
c(A) is a multi-set if A has repeated eigenvalues. The spectral radius of A
is defined and denoted by p(A) = max{|\| : A € o(A)}.

Theorem 1.1 (Spectral Decomposition). Every normal matric is unitarily
similar to a diagonal matriz; i.e., if A € My, is normal, then there exists a
unitary matriz U € M, such that

(1.1) A = Udiag(Ay, ..., A\n)U".
Obviously Ay, ..., \n, are the eigenvalues of A, and they can appear on the

diagonal in any prescribed order.

We will prove this theorem in Section 1.7 using Schur’s unitary triangu-
larization theorem.

Denote by (-,-) the standard Euclidean inner product on C". If z =
n

(1,-- &)L, ¥y = (y1,.-.,90)T € C", then (z,y) = 3 z;¥; = y*z. The
i=1

vector space C™ with this inner product is a Hilbert space. A matrix A € M,
may be regarded as a linear operator on C" : z — Az. Since (Az,y) =



1.1. Classes of Special Matrices 3

(x, A*y) for all z,y € C", the conjugate transpose A" is exactly the adjoint
of A in the operator theory setting.

A € M, is said to be positive semidefinite if
(1.2) (Az,z) >0 for all zeC".

A € M, is said to be positive definite if
(1.3) (Az,z) >0 for all 0#aeC"

Positive definite matrices are exactly invertible positive semidefinite matri-
ces. Invertible matrices are also called nonsingular, while square matrices
that have no inverse are called singular.

As usual, denote by R the field of real numbers. For A € M, and
z,y € C™ we have the following polarization identities:

3
KAz, y) = Y iF(A(z + iFy), z + iFy),
0

N
I

i*(z + i*y, A(z + b)),

NS

4z, Ay) =

o
Il

0

where i = /—1. It follows from these two identities that for a given A € M,
if (Az,z) € R for any z € C", then A is Hermitian. In particular, the defin-
ing condition (1.2) implies that a positive semidefinite matrix is necessarily
Hermitian. In fact, positive semidefinite matrices are those Hermitian ma-
trices which have nonnegative eigenvalues, and positive definite matrices are
those Hermitian matrices which have positive eigenvalues. If A € M, is pos-
itive semidefinite, then for any B € M, x, B*AB is positive semidefinite; if
A € M, is positive definite, then for any nonsingular B € M,,, B*AB is
positive definite.

Let A € M, (R) be real and symmetric. For x € C", let x = y+1iz where
y,z € R™. Then z*Az = y? Ay + 27 Az. Thus a real symmetric matrix A is
positive semidefinite if and only if 27 Az > 0 for all z € R™, and it is positive
definite if and only if 7 Az > 0 for all 0 # z € R™.

A matrix is said to be diagonalizable if it is similar to a diagonal matrix.
From the Jordan canonical form it is clear that if A € M, has n distinct
eigenvalues, then A is diagonalizable.

A = (a;;) € My, is called upper triangular if a;; = 0 for all i > j, i.e., the
entries below the diagonal are zero. If a;; = 0 for all ¢ > j then A is called
strictly upper triangular.

A = (a;j) € M, is called lower triangular if a;; = 0 for all i < j, i.e., the
entries above the diagonal are zero. If a;; = 0 for all # < j then A is called
strictly lower triangular.
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It is easy to verify that the product of two upper (lower) triangular
matrices is upper (lower) triangular and the inverse of an upper (lower)
triangular matrix is upper (lower) triangular.

A = (a;j) € My, is called a Hessenberg matriz if a;; = 0 for all i > j + 1.

We say that a matrix A = (a;;) has upper bandwidth p if a;; = 0 for
all 4,7 with j —i > p; A has lower bandwidth q if a;; = 0 for all 4,7 with
i — j > q. For example, lower triangular matrices have upper bandwidth 0,
and Hessenberg matrices have lower bandwidth 1. A matrix A € M, is called
a band matriz if A has upper bandwidth p < n — 2 or has lower bandwidth
g<n—2.

A matrix is called a sparse matriz if it has many zero entries. This is
not a precise notion.

A = (aij) € My, is called a 0-1 matriz if every entry a;; € {0,1}. A
square 0-1 matrix that has exactly one 1 in each row and in each column is
called a permutation matriz.

A = (aij) € My, is called a Toeplitz matriz if there are numbers

Qntly---,0-1,00,01y.--,Qp—1

such that a;; = a;_;. Hence a Toeplitz matrix is a matrix of the form

F ag aj ag v Qp—1 1
a—1 agp ai v Qp—2
a—9 a_j ag ce. QAp—3
| G—n+1 G-ni2 QGn43 - ap
A = (a;5) € M, is called a Hankel matriz if there are numbers ay, . .., as,—1

such that a;; = a;;;_1. Hence a Hankel matrix is a matrix of the form

ay as as se an,
as as a4 5o An41
as agq as ¥ o QAn4-2

| On Qn+1 Qp42  -.. Q2p—1 |

A matrix of the form

ay an ag ... an
anp a1 a2 ... Qp_1
(1.4) A= | Gn-1 an a1 ... Qp-2

as as ag ... aq J
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is called a circulant matriz. Such an A is determined by the first row, and
each row is just the previous row cycled forward one step. Denote the matrix
in (1.4) by Circ(a1,az,as,...,a,). P = Circ(0,1,0,...,0) is called the basic
circulant matriz. Note that P is a permutation matrix. We have

n—1
(1.5) A=Y apn P
k=0

The characteristic polynomial of P is \* — 1, so its eigenvalues are 27,j =
2w P ;@ s
0,1,...,n—1,wherez = en’,i=/—1.Letz; = -=(1,27,2%,..., 2n=NT,

Ih
Then xg,71,...,Tn,—1 are orthonormal eigenvectors of P. Let U =
(zo,Z1,---,2n—1). Then U is a unitary matrix and
(1.6) P = Udiag(1, z,2%,..., 2" " HU*.
n—1
Let f(t) = Y agy1t®. (1.5) and (1.6) yield
k=0
(L.7) A = Udiag(f(1), f(2), f(2%),..., f(z")U™.

(1.7) shows that all the circulant matrices in M,, can be unitarily diagonal-
ized by one fixed unitary matrix.

A matrix of the form

1 1 1 o 1
ail a as e Qp,
2 2 2 2
V= B ay az Gy
n—1 n—1 n—1 n—1
L 3 g ag T G

is called a Vandermonde matriz. Since the determinant

detV = H(az - aj),

1>]
V is nonsingular if and only if a3, ag, ..., a, are distinct. The Vandermonde
matrix has several variants. For example, a matrix of the form
- n—1 n—2 7
ay . ay , eeoayp 1
n— n—
aq ) Qg , a1
W=|a a3 - a3 1
n—1 n—2
| O ap roap 1 |

is also called a Vandermonde matrix whose determinant is

det W = H(ai — @j).

1<j
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1.2. The Characteristic Polynomial

By definition, the characteristic polynomial of a square matrix A is f(t) =
det(tI — A).

Theorem 1.2. Let Ex(A) be the sum of all the k x k principal minors of a
matriz A of order n over a field. Then the characteristic polynomial of A is

(18)  f(t) = t" — By(A)" + Bp(A)"2 — - 4 (=1)"En(A).

Proof. For a matrix G of order n and integer indices 1 < i) < is < ++- <
ix < n, we denote by G(iy,is,...,1) the principal submatrix of G obtained
from G by deleting rows iy,1s, ..., and deleting columns i1, g,..., . In-
troduce indeterminates t1,...,t, and consider the matrix

B = diag(t1, ta, ..., tn) — A.

We have the following expansion of the determinant:

n n—1
(1.9) detB =[]t - > det A(ir, iz, . . in—1) [ ]
j=1 1<i1 <ip <+ <in—1<n 4=1
+ Z detA(‘il,iQ,.‘.,in_g)Htij —---+(—1)"detA.

1<i1<in<<in—2<n

To see this, first note that the constant term in the expansion of detB is
( 1)"det A = (—1)"E,(A). Then for any but fixed indices 1 < i; < ip <

- < i < n, using the Laplace expanswn according to the rows iy, 9, ..., ik
we see that the coefficient of #;,t;, - - - t;, is (—1)" "% det A(iy, 42,...,ix), since
the constant term in the expansion of det B(iy,49,...,1) 18

(=1)"* det A(iy, g, . . . , k).
This proves (1.9).
Now in B, setting t; =t; =--- =t, =t we get (1.8), since
En_(A) = > det A(i, iz, . . ., i)
1< <ig<--<ix<n

O

The following theorem gives a basic relation between the coefficients of a
polynomial and the moments of its roots. Note that a polynomial of degree
n over a field F' has n roots (including multiplicities) in the algebraic closure
of F.

Theorem 1.3. Let f(t) = t"+a,_1t" '+ - -+ait+ag be a monic polynomial
over a field with roots Ay, ..., A, including multiplicities. Denote the k-th



