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Preface

There is a canard that every textbook of algebraic topology either ends with
the definition of the Klein bottle or is a personal communication to J. H. C.
Whitehead. Of course, this is false, as a glance at the books of Hilton and
Wylie, Maunder, Munkres, and Schubert reveals. Still, the canard docs reflect
some truth. Too often one finds too much gerierality and too little attention
to details. .

There are two types of obstacle for the student learning algebraic topology.
The first is the formidable array of new techniques (e.g., most students know
very little homological algebra); the s:cond obstacle is that the basic defini-
tions have been so abstracted that their geometric or analytic origins have
been obscured. I have tried to overcome these barriers. In the first instance,
new definitions are introduced only when needed (e.g., homology with coefli-
cients and cohomology are deferred until after the Eilenberg—Steenrod axioms
have been verificd for the three homology theories we treat—singular, sim-
plicial, and cellular). Moreover, many exercises are given to help the reader
assimilate material. In the second instance, important definitions are often
accompanied by an informal discussion describing their origins (e.g., winding
numbers are discussed before computing =n,(S'), Green's theorem occurs
before defining homology, and differential forms appear before introducing
cohomology).

We assume that the reader has had a first course in point-set topology, but
we do discuss quotient spaces, path connectedness, and function spaces. We
assume that the reader is familiar with groups and rings, but we do discuss
free abelian groups, free groups, exact sequences, tensor products (always over
Z), categories, and functors. ’

I am an algebraist with an interest in topology. The basic outline of this
book corresponds to the syllabus of a first-year’s course in algebraic topology
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designed by geometers and topologists at the University of Illinois, Urbana;.
other expert advice came (indirectly) from my teachers, E. H. Spanier and S.
Mac Lane, and from J. F. Adam’s Algebraic Topology: A Student’s Guide. This
latter book is strongly recommended to the reader who, having finished this
book, wants direction for further study.

[ am indebted to the many authors of books on algebraic topology, with
a special bow to Spanier’s now classic text. My colleagues in Urbana, es-
pecially Ph. Tondeur, H. Osborn, and R. L. Bishop, listened and explained.
M_.-E. Hamstrom took a particular interest in this book: she read almost the
entire manuscript and made many wise comments and suggestions that have
improved the text; my warmest thanks to her. Finally, I thank Mrs. Dee
Wrather for a superb job of typing and Springer-Verlag for its patience.

Joseph J. Rotman



To the Reader

Doing exercises is an essential part of learning mathematics, and the serious
reader of this book should attempt to solve all the exercises as they arise. An
asterisk indicates only that an exercise is cited elsewhere in the text, sometimes
in a proof (those exercises used in proofs, however, are always routine).

I have never found references of the form 1.2.1.1 convenient (after al, one
decimal point suffices for he usual description of real numbers). Thus, Theorem
7.28 here means the 28th theorem in Chapter 7.
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CHAPTER 0

Int_roduction

One expects algebraic topology to be a mixture of algebra and topology, and
that is exactly what it is. The fundamental idea is to convert problems about
topological spaces and continuous functions into problems about algebraic
objects (e.g., groups, rings, vector spaces) and their homomorphisms; the
method may succeed when the algebraic problem is easier than the original
one. Before giving the appropriate setting, we illustrate how the method
works. )

Notation
Let us first introduce notation for some standard spaces that is used through-
out the book. : . d

Z = integers (positive, negative, and zero).
Q = rational numbers.

C = complex numbers.

I =_[0, 1], the (closed) unit interval.

R = real numbers.

R" = {(x;,%3, ..., X,)|x; € R for ali i}.

R" is called real n-space or euclidean space (of course, R" is the cartesian
product of n copies of R). Also, R? is homeomorphic to C; in symbols, R? ~ C.
If x = (xy, ..., x,) € R", then its norm is defined by ||x|| = /) 7, x? (when
n = 1, then ||x|| = | x|, the absolute value of x). We regard R" as the subspace
of R"*! consisting of all (n + 1)-tuples having last coordinate zero.

$"={xeR"™: x| =1}.
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S™ is called the n-sphere (of radius 1 and center the origin). Observe that
S" = R"*!(as the circle S! = R?); note also that the 0-sphere S° consists of the
two points {1, — 1} and hence is a discrete two-point space. We may regard
S" as the equator of S"*!:

S" = R"+l ﬂS"ﬂ = {(xl, ceey Xn+2)e Sll+l: xn+2 = 0}

The north pole is (0,0, ...,0, 1) € S”; the south pole is (0,0,...,0, —1). The
antipode of x = (x,, ..., x,,,;) € S"is the other endpoint of the diameter having
one endpoint x; thus the antipode of x is —x =(—x,, ..., —X,4,), for the
distance from — x to x is 2.

D" = {xeR" ||x|| <1}.

D" is called the n-disk (or n-ball). Observe that S”™! < D" < R"*;indeed S" ! is
the boundary of D" in R".

A" = {(xy, X3, ..., Xps1) € R" ' €ach x; > 0and ) x; = 1}.

A" is called the standard n-simplex. Observe that A° is a point, A' is a closed
interval, A? is a triangle (with interior), A3 is a (solid) tetrahedron, and so on.
It is obvious that A® ~ D", although the reader may not want to construct' a
homeomorphism until Exercise 2.11.

There is a standard homeomorphism from S" — {north pole} to R" called
stereographic projection. Denote the north pole by N, and define o: S" — {N}
— R" to be the intersection of R” and the line joining x and N. Points on
the latter line have the form tx + (1 — t)N; hence they have coordinates
(txy, ...y tX,, tXeq + (1 = t)). The last coordinate is zero for t = (1 — x,4,)7};
hence

(%) = (tXy, v v 5 E%0)s 2

where t = (1 — x,,,)"!. It is now routine to check that ¢ is indeed a homeo-
morphism. Note that ¢(x) = x if and only if x lies on the equator S*™*.

Brouwer Fixed Point Theorem

Having established notation, we now sketch a proof of the Brouwer fixed point
theorem: if f: D" — D" is continuous, then there exists x € D" with f(x) = x. R
When n = 1, this theorem has a simple proof. The disk D! is the closed interval

[—1, 1]; let us look at the graph of f inside the square D! x D!.

! It is an exercise that a compact convex subset of R* containing an interior point is homeomor-
phic to D" (convexity is defined in Chapter 1); it follows that A*, D", and I"* are homeomorphic.
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Theorem 0.1. Every continuous f: D' — D' has a fixed point.

ProoF. Let f(—1) = a and f(1) = b. Ifeither f(—1) = —1 or f(1) = 1, we are
done. Therefore, we may assume that f(—1) =a > —1land that f(1) =b < 1,
as drawn. If G is the graph of f and A is the graph of the identity function (of
course, A is the diagonal), then we must prove that GN A # &. The idea is to
use a connectedness argument to show that every path in D! x D! from a to
b must cross A. Since f is continuous, G = {(x, f(x)): x € D'} is connected [G
is the image of the continuous map D' — D' x D' given by x> (x, f(x))].
Define A = {(x, f(x)): f(x) > x} and B = {(x, f(x)): f(x) < x}. Note thata € 4
and be B, so that A # J and B # . If GNA = ¢, then G is the disjoint
union

G=AUB.

Finally, it is easy to see that both 4 and B are open in G, and this conpradicts
the connectedness of G. 0

Unfortunately, no one knows how to adapt this elementary topological
argument when n > 1; some new idea must be introduced. There is a proof
using the simplicial approximation theorem (see [Hirsch]). There are proofs
by analysis (see [Dunford and Schwartz, pp. 467-470] or [Milnor (1978)]);
the basic idea is to approximate a continuous function f: D" — D" by smooth
functions g: D" — D" in such a way that f has a fixed point if all the g do; one
can then apply analytic techniques to smooth functions.

Here is a proof of the Brouwer fixed point theorem by algebraic topology.
We shall eventually prove that, for each n > 0, there is a homology functor H,
with the following properties: for each topological space X there is an abelian
group H,(X), and for each continuous function f: X — Y there is a homomor-
phism H,(f): H,(X) — H,(Y), such that:

H,(g o f) = H,(g) o H,(f) (1)
whenever the composite g o f is defined;

H,(1y) is the identity function on H,(X), )
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where 1, is the identity function on X;
H(D"')=0 foralln>1; 3)
H,(S") # 0 foralln > 1. 4)

Using these H,’s, we now prove the Brouwer theorem.

Definition. A subspace X of a topoiogical space Y is a retract of Y if there is
a continuous map? r: Y — X with r(x) = x for all x € X; such a map r is called
a retraction. '

Remarks. (1) Recall that a topological space X contained in a topological
space Y is a subspace of Y if a subset V of X is open in X if and only if
V = XNU for some open subset U of Y. Observe that this guarantees that
the inclusion i: X & Y is continuous, because i (U) = X N U is open in X
whenever U is open in Y. This parallels group theory: a group H contained
in a group G is a subgroup of G if and only if the inclusion i: H< G is a
homomorphism (this says that the group operations in H and in G coincide).

(2) One may rephrase the definition of retract in terms of functions. If
i: X & Y is the inclusion, then a continuous map r: Y — X is a retraction if
and only if

r°i=1x.

(3) For abelian groups, one can prove that a subgroup H of G is a retract
of G if and only if H is a direct summand of G; that is, there is a subgroup K
of G with KNH = 0and K + H = G (sec Exercise 0.1).

Lemma 0.2. If n > 0, then S" is not a retract of D"*'.
PROOF. Suppose there were a retraction r: D"*! — S"; then there would be a
“commutative diagram” of topelogical spaces and continuous maps

Dn-!-l

s — 5"

(here commutative means that r o i = 1, the identity function on S"). Applying
H, gives a diagram of abelian groups and homomorphisms:

H,(D™*")

p H,(i)/‘ : \H.(r)

H,(S) ) H,(S").

¥

2 We use the words map and funetion interchangeably.



