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Preface

In many academic and industrial R&D projects, physicists, chemists and engineers
are working together. In particular, the development of advanced functionalized
materials requires an interdisciplinary approach. In the last decades, the size of
common devices and used material structures has become smaller and smaller.
This has led to the emergence of the so-called nanotechnology, that is, a tech-
nology that uses material systems with an extent of less than several hundred
nanometers. The enormous technical advances in this field are subject to two
mutually amplifying effects. On the one hand, modern experimental techniques
have been developed that allow the observation, manipulation, and manufactur-
ing of materials at an atomic length scale with an industrially relevant production
rate. On the other hand, the enhancements in the computer technology have led
to a tremendous growth of the scientific field of computational material sciences.
Nowadays, modern simulation methods are indispensable for the design of new
and functionalized nanomaterials. They are essential to understand the chemical
and physical processes beyond many macroscopic effects.

However, the basic concepts of modern atomistic simulation methods are not
very well established in common engineering courses. Furthermore, the existing
literature either deals with very specific problems or is at a very deep physical
or mathematical level of theory. Therefore, the intention of this book is to give a
comprehensive introduction to atomic scale simulation methods at a basic level of
theory and to present some recent examples of applications of these methods in
industrial R&D projects. Thereby, the reader will be provided with many practical
advices for the execution of proper simulation runs and the correct interpretations
of the obtained results.

For those readers who are not familiar with basic modern mathematical
and physical concepts, Part I will give a rough introduction to Newtonian
and quantum mechanics, thermodynamics, and symmetry-related properties.
Furthermore, necessary mathematical concepts will be introduced and the reader
will be provided with the denotation and terminology that will be used later on.
Readers with a fundamental physical and mathematical knowledge may skip this
part and look up certain aspects later, if it is necessary.

Part II gives a brief introduction to important aspects of state-of-the-art atomic
scale simulation techniques. In particular, the basics of classical and reactive
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Preface

force field methods, the density functional and Hartree—Fock theory, as well
as multiscale approaches will be discussed. Possible fields of application will be
depicted, and limitations of the methods are illustrated. Furthermore, several
more advanced methods, which are able to overcome some of these limitations,
will be shortly mentioned. The intention of this part is to enable the reader to
decide which simulation method (with which limitations) would be optimal to
investigate a certain problem of interest.

The last part illustrates possible application scenarios of atomic scale sim-
ulation techniques for industrially relevant problems. It is divided into three
chapters that consider three different industrial fields: microelectronics, chemical
processes, and nanotechnology. Real industrial problems and the corresponding
contributions of atomic scale simulations will be presented to the reader. Thereby,
the set up, the execution, and the analysis of the results will be discussed in
detail, and many practical hints for potential users of atomic scale simulations
are provided.

Chemnitz Roman Leitsmann
April 2015
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1
Introduction

The scope of this part is to provide the reader with basic physical and mathemat-
ical principles that are necessary to understand the discussions in the following
chapters. Furthermore, a notation is introduced, which will be utilized throughout
the remaining book. No special previous knowledge is required from the reader-
ship. Nevertheless, a basic scientific knowledge is advantageous. Part I makes no
claim to provide a complete overview. Many things can be discussed only very
briefly. For a more detailed description of special topics and background informa-
tion, the readers are provided with suitable references.

Those readers who are already familiar with the physical and mathematical con-
cepts can skip this part and look up certain points later if necessary.

In-vitro Materials Design: Modern Atomistic Simulation Methods for Engineers, First Edition.
Roman Leitsmann, Philipp Planitz, and Michael Schreiber.
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2
Newtonian Mechanics and Thermodynamics

Classical or Newtonian mechanics describes the motion of objects, from small
particles to astronomical objects. Newtonian mechanics provides extremely accu-
rate results as long as the domain of study is restricted to macroscopic objects
and velocities far below the speed of light. When the objects being dealt with
become sufficiently small, it becomes necessary to include quantum mechanical
effects (see Chapter 4). In the case of velocities close to the speed of light, classical
mechanics has to be extended by special or general relativity.

The following section introduces the basic concepts of classical Newtonian
mechanics and its application to atomistic objects. At the end of this section, a
critical discussion about the restrictions of this approach is given.

2.1
Equation of Motion

Quite often, objects are treated as point particles, that is, objects with negligible
size. The motion of a point particle is characterized by a small number of param-
eters: its position, its mass, and its momentum.

Note: In reality, all objects have a nonzero size. However, often, they can be
treated as point particles, because effects related to the finite size are either
not of interest or have to be described by more sophisticated theories such as
quantum mechanics.

The position of a point particle r can be defined with respect to an arbitrary
fixed reference point R, in space.” In general, the point particle does not need not
be stationary relative to R, so r is a function of the time ¢

r=r(). (2.1)

1) Classical mechanics usually assumes an Euclidean geometry [1] accompanied by a certain three-
dimensional coordinate system. For simplicity, we use in this book a simple Cartesian coordinate
system.

In-vitro Materials Design: Modern Atomistic Simulation Methods for Engineers, First Edition.
Roman Leitsmann, Philipp Planitz, and Michael Schreiber.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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2 Newtonian Mechanics and Thermodynamics

Without loss of generality, the reference point can always be assumed to be at the
origin of the used coordinate system, that is,

R, = (0.0.0). (2.2)

Note: The position of the point particle and all similar quantities are three-
dimensional vectors. They must be dealt with using vector analysis. They will
be denoted by

r(t) = (x(2), y(0), 2(2)),

where x, y, and z are the Cartesian coordinates of the point particle.

The velocity v, or the rate of change of position with time, is defined as the
derivative of the position with respect to the time

V= % =r. (2.3)
The acceleration, or rate of change of velocity, is the derivative of the velocity with
respect to time (the second derivative of the position with respect to time)
a=% =
dt
The acceleration can arise from a change with time of the magnitude of the velocity
or of the direction of the velocity or both.

V=F (2.4)

Note: Ifonly the magnitudev = |v| of the velocity decreases, this is sometimes
referred to as deceleration, but generally, any change in the velocity with time,
including deceleration, is simply referred to as acceleration.

As we all know from our everyday life, an acceleration of an object requires the
action of a force on it. Sir Isaac Newton was the first who mathematically described
this relationship, which is known today as Newton's second law”

dp d(mv)
F= E = —dt = ma
The quantity p = mv introduced in this equation is called (canonical) momentum.
The force acting on a particle is thus equal to the rate of change of the momentum
of the particle with time.
As long as the forces acting on a particle are known, Newton’s second law is
sufficient to completely describe the motion of the particle. Hence, written in a
slightly different form, it is also called equation of motion

p=ma=)F, (2.6)

(2.5)

2) The last identity is only true in cases where the mass #1 of the particle is constant.



