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PREFACE

The purpose of this book is to provide instructions, procedures, and
solutions for the static analysis of aerospace, civil, and mechanical
engineering shell structures. This book also provides an introduction
to and reference {or the theory of shells.

To a great extent, much of the material from which this book was
developed was obtained from the “Shell Analysis Manual,” NASA
CR 912. The “Shell Analysis Manual” was prepared for the National

- Aeronautics and Space Administration, Manned Spacecraft Center,
Houston, Texas, by North American Rockwell Corporation, Space
Division, Downey, California, under Contract NAS9-4387, for which
Mr. Herbert C. Kavanaugh, Jr., was the NASA technical monitor.

Generally, the information presented in this book is a condensa-
tion of material published by U.S. Government agencies, universities,
scientific and technical journals, text books, aerospace industries, in-
cluding North American Rockwell Corporation, and foreign publi-
cations. Particular credit is given to the following publishers who
granted permission to use their publications.

American Institute of Aeronautics and Astronautics, New York, New
York.



xhi Preface

American Rocket Society Journal, Vol. 31, No. 2, February 1961, pp. 237-246, “Sta-
bility of Orthotropic Cylindrical Shells Under Combined Loading” by T. E. Hess.

Journal of the Aerospace Sciences, Vol. 29, No. 5, May 1962, pp. 505-511, “Elastic
Stability of Orthotropic Shells” by H. Becker and G. Gerard.

American Concrete Institute, Detroit, Michigan.

Journal of the American Concrete Institute, No. 2, Vol. 27, October 1955, “Line
Load and Temperature Moments in Shells of Rotation Built into Cylinders” by
M."G. Salvadori.

Ame;rican Society of Civil Engineers, New York, New York.

Journal of the Structural Division, Vol. 82, July 1956, “Bending Stresses in Edge
Stiffened Domes ” by M. G. Salvadori and Shermann.

R Oldenbourg Verlage, Miinchen, West Germany.
Drang and Swang by L. Foppl, 1941, 1944, and 1947.

Springer Verlag, Berlin, West Germany.
Stresses in Shells by W. Fligge, 1957.

Wilhelm Ernst and Sohn Verlag, Berlin, West Germany.
Beton Kalender by G. Worch, 1943 and 1958.

 We also found the books Elementary Statics of Shells by A. Pfliger
and Statik Rotationssymmetrischer Flichentragwerke by E. Hampe
to be of great benefit.

‘Detailed derivations of formulas are limited because it is not
believed to serve the purpose of this book. Numerous references to
more detailed discussions are given.

The book has been developed primarily from. existing material in
the field of shells. The original works are referenced in the bibli-
ography.

Chapter 2 outlines the force method for shells and simpler multi-
shells which are combined from not more than two shell elements.

‘Chapter 3 presents the primary solutions needed for the force
method for many shell geometries for many loadings.

Chapter 4 presents the secondary solutions for the same purpose.

Chapter 5 presents some special cases such as cylinders and spheres
with different boundary conditions. Also the solution of interaction

for a cylinder with abrupt change of wall thickness.

Chapter 6 finally presents the force method for comphcated multi-
shells with more than two shell elements.

- Chapter 7 treats composite shells, reducing them to the same
methods which were explained previously.



Preface xiii

Chapter 8 presents the special cases of unsymmetrical shells (un-
symmetrical due to geometry or loading). :

Chapter 9 treats allowables and margins of safety for the biaxial
state of stress as occurs in a shell structure. This chapter concludes
the static analysis of multishells. _

Chapter 10 is the first chapter in which stability is presented. The
monocoque shells are discussed and formulas are presented.

Chapter 11 continues the stability analysis of shells, treating ortho-
tropic shells in general. .

Chapter 12 presents in more detail stability of stiffened shells.

Chapter 13 presents stability of sandwich shells.

This book was written by engineers for engineers and for the per-
sonal usage of the authors who participated in writing of this docu-
ment and whose names are listed in alphabetical order. It is the
authors’ hope that this book will be not only useful to the practicing
engineers but also for the students who would like to extend their
knowledge of shell anaiysis. To help them, primarily, the introductory
chapter is included which contains’ basic derivations which are
needed for good understanding of shell analysis. An experienced
engineer can simply omit this introductory chapter.

E. H. Baker
L. Kovalevsky
F. L. Rish
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Chapter 1

INTRODUCTION TO
THE THEORY' OF SHELLS

1-1 General

The most common shell theories are those based on linear elasticity
concepts. Linear shell theories adequately predict stresses and deforma-
tions for shells exhibiting small elastic deformations, that is, deformations
for which it is assumed that the equilibrium-equation conditions for
deformed elements are the same as if they were not deformed and Hooke’s
law applies.

The nonlinear theory of elasticity forms the basis for the finite-
deflection and stability theories of shells. Large-deflection theories are
often required when dealing with shallow shells, highly elastic mem-
branes, and buckling problems. The nonlinear shell equations are
con51derably more difficult to solve and for this reason are more 11m1ted
in use.

Development of more exact theoretical expresswns does not necessarily
assist in the solution of practical shell problems, since often the theoretical
expressions can be solved ‘only with great difﬁculty, and then only for
special cases. The experimental approach is also limited because data
are not available for every special case.
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Practical difficulties in both theory and experiment have led to the
development and application of applied engineering methods for the
analysis of shells. While these methods are approximate and are valid
only under specific conditions, they generally are very useful and give
good accuracy for the analysis of practical engineering shell structures.

1-2 Linear Shell Theory

The theory of small deflections of thin elastic shells is based upon the
equations of the mathematical theory of linear elasticity. The geometry
of shells (i.e., one dimension much smaller than the other dimensions)
does not warrant, in general, the consideration of the complete three--
dimensional elasticity equations. In fact, the consideration of the com-
plete elasticity equations leads to expressions and equations which are
so complicated that it becomes impossible to obtain solutions for shell
problems of practical interest.

Fortunately, however, sufliciently accurate analyses of thin shells
can be obtained using simplified versions of the general elasticity
equations. In the development of thin-shell theories, simplification is
accomplished by reducing the shell problem to the study of the deforma-
tions of the middle (or reference) surface of the shell. In all cases, one
begins with the governing equations in the three-dimensional theory
of elastidity and attempts to reduce the system of equations, involving
three independent space variables, to a new system involving only two
space variables. These two variables are more conveniently taken as
coordinates on the middle surface of the shell.

Shell theories of varying degrees of accuracy may be derived,
depending upon the degree to which the elasticity equations are
simplified. The approximations necessary for the development of an
adequate theory of shells have been the subject of considerable contro-
versy among investigators in the field. A brief discussion of the approxi-
mations is presented in Sec. 1-11. The theory presented in Secs. 11-8 and
11-9 is a first-order-approximation shell theory for axisymmetrically
loaded shells of revolution.

1-3 Geometry of Shells

Before shell theory is discussed, the geometry of an arbitrary shell in
three-dimensional space 1s defined. The geometry of a shell is entirely
defined by specifying the form of the middle surface and the thickness of
the shell at each point. To describe the form of the middle surface, it is
" necessary to present some of the important geometrical properties of a
surface. A more detailed presentation of the theory of surfaces can be
found in books on tensor analysis and differential geometry.
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In the engineering application of thin shells, a shell whose reference
surface is in the form of a surface of revolution has extensive usage.
This discussion ‘is restricted to surfaces of revolution. A surface of
revolution is obtained by rotation of a plane curve about an axis lying
‘in the plane of the curve. This curve is called the meridian, and its plane
is the meridian plane. The intersections of the surface with planes
perpendicular to the axis of rotation are parallel circles and are called
parallels.

For such a shell the lines of principal curvature are its meridians and
parallels. The following nomenclature.is given in Fig. 1-1.

¢ = angie between the axis of the shell and the shell normal at the point
under consideration on the middle surface of the shell
6 = angle between r and any defined line ¢

The radii of curvature of a shell of revolution are

R, = radius of cuivature of meridian
R, = length of the normal betwecen any point on the middle
surface and the axis of rotation
r = radius of curvature of the parallel
R, and R, = principal radii of curvature of the surface

The following geometrical relation is of fundamental importance:

r = Rysiné

1-4 External Loadings

The external loads consist of body forces that act on the element and
surface forces that act on the upper and lower surfaces of the shell
element.

All loadings under consideration at any point on the shell can be
resolved into three components in the x, y, and 2. directions. The
x direction is parallel to the tangent to the meridian. The y direction
is parallel to the tangent to the parallel circle, and the 2 direction is
normal to the surface of the shell. For example: The deadweight p
(weight of shell per unit area) for a shell of revolution can be resolved
into load per unit area in the x, y, and 2 directions, respectively, in the
following manner (Fig. 1-2): ‘

Pm:PSin¢ P‘y:O pz:PCOS¢
1-5 Internal Stresses

The external forces are resisted by internal forces, or stresses, which are
in equilibrium with the external forces. It is convenient to investigate
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the stresses along a meridian and parallel, which are defined By the
angles ¢ and 0.

¢ Shell

figure 1-1 - Shell of revolution. figure 1-2 Loading components
from deadweight.

The internal forces consist of membrane forces, transverse shears,
bending moments and twisting moments.

1. The membrane forces, which act in the plane of the surface of
shell, are shown in Fig. 1-3.

&Meridycn

tigure 1-3 Membranc forces.

N4, Ny — normal inplane forces per unit length (load/unit length)
Ny, Ngy = inplane shear forces per unit length (load/unit length)

These forces can vary along the meridian and parallel (sec Fig. 1-3).

2. The transverse shear forces pet unit length O, and g, are shown
in Fig. 1-4.
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Meridian
d
' -
. " \Poral lel
% s

figure 1-4 Transverse shear forces.

3. Bending moments M, and M, per unit length and twisting moments
M, and M,, per unit length are shown in Fig. 1-5.

\(Meridian

figure 1-5 Bending and twisting moments.

The positive directions of all stresses under 1, 2, and 3 are shown in
the corresponding figures. All positive loadings act in the positive
direction of the system of coordinates.

In the preceding section, all internal forces are replaced by statically
equivalent forces and moments.

1-6 Condition of Equitibrium

The conditions for equilibrium of the shell element under external and
internal loads will be determined. The equations arising by virtue of
the demands of equilibrium and the compatibility of deformations will
be derived by considering an individual differential shell element.
These equations are relations between differential quantities or between
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differential changes in the internal forces and therefore are called
differential équations. If a differential element is imagined separated
from the loaded shell, it is stressed by 10 internal components which
must be in equilibrium with the external loads.

N¢,N9,N¢g,1V9¢,Q¢,Q9,]’/1¢,Mg,M.,,Q,MM

To determine these components, there are known only six equilibrium
.equations:

YFE, =0 YM, =~
YF, =0 YM,=0 (-1
YF, =0 YM =0

where 3 F; is the sum of the force in the 7 direction (¢ = x, y, 2) and
3 M, is the sum of the moments about the ¢ axis. This problem is four
times internglly statically indeterminate.

1-7 Membrane Theory for Shells of Revolution

Consider a truss structure, which is physically many times internally
statically indeterminate, This complicated problem can be simplified
by assuming all joints of the truss are pinned. This means that each
member of the truss is stressed only axially. End moments and shears
are zero, and the truss is analyzed as an internally statically determinate
structure.

Similar assumgptions may be introduced in the shell equations:

Mrn = f\/Ie =5 M‘M = AW[M = Qd’ == Qg = 0
Consequently, only four unknowns remain:
Nas v No s -Nd>5 » Nstt

which are called the membrane forces. If a shell theory includes only
the membrane forces in the analyses, it is called a membrane theory.
Certain restrictions in the use of membrane theory will be discussed in
Chap. 2.
Figure 1-6 shows a differential element of the shell whose area may
be expressed '
dA = r dO R, dp

Figure 1-7 shows all forces in equilibrium which may act on a differential
element in the membrane theory. The componenis of the external



