Graphics
Shaders

THEORY AND PRACTICE
SECOND EDITION

MIKE BAILEY - STEVE CUNNINGHAM

Graphics Shaders

Second Edition

Theory and Practice

Mike Bailey

)

2, g,
‘l
!

Steve Cunni ﬁh}alrh)\ j; ﬁ'

77& :1‘3?’ =)

‘.. —"

@ CRC Press
jor & Francis Group
Bocalh n London New York

CRC Pressisln mprint ofth
& Francis Group, an informa business

AN A K PETERS BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
Version Date: 2011913

International Standard Book Number: 978-1-56881-434-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Library of Congress Cataloging-in-Publication Data

Bailey, Michael (Michael John), 1953-
Graphics shaders : theory and practice / Mike Bailey, Steve Cunningham..-- 2nd ed.
p.cm.
Summary: “This book uses examples in OpenGL and the OpenGL Shading Language to present the theory and application of shader programming.
1t explains how to program graphics shaders effectively for use in art, animation, gaming, and visualization. Along with improved graphics and new
examples and exercises, this edition includes a discussion on handling OpenGL's evolution beyond its original built-in functionality, including four new
appendices that provide C++ class code to help in this transition. It includes a new chapter on tessellation shaders. It also discusses shaders in multipass
rendering and presents new applications including terrain bump mapping, morphing 3D geometry, and wavy glass.”-- Provided by publisher.
Includes bibliographical references and index.
ISBN 978-1-56881-434-6 (hardback)
1. Computer graphics. 2. OpenGL. 3. Three-dimensional display systems. I. Cunningham, Steve. L1. Title.

T385.B3455 2011
006.6'6--dc23 2011031720

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Graphics Shaders

Second Edition

To my parents,
Ted and Anne Bailey,
whose respect for both curiosity and books
made a project like this inevitable sometime.
- MJB

To the other writers in my family:
Judy,
for her collaboration on so many projects
and her patience with my work on this one, and
Rob and Rick,
for their own past and future writing projects.
=8C

Foreword

Excellent! I am glad that you are reading this book. You might want to skip
straight ahead to the good stuff, but as long as you are here...

Computer graphics is a fascinating and fast-changing field that didn’t
even exist when I was born. I was attracted to it because it is a field with a
unique mix of engineering and artistry. In the computer graphics industry,
people with engineering skills design graphics software and hardware prod-
ucts that offer ever-increasing levels of performance and image quality. These
products inspire people with artistic skills to use the resulting products to cre-
ate amazing visual experiences that entertain, teach, or help others create or
design. This in turn inspires the engineers to create even better hardware and
software in order to improve the visual experiences created by artists. This
symbiotic relationship between engineers and artists has never let up and has

XiX

XX

Foreword

resulted in photorealistic effects for movies and near-cinematic quality experi-
ences for computer games.

You might be reading this book because of your interest in the computer
graphics field. Perhaps you are an engineer looking to develop another tool for
your toolbox of software development skills for computer graphics. Perhaps
you are an artist who is interested in learning a little more about the bits and
bytes of how computer graphics images are created. Perhaps you are that rare
breed, an engineer/artist, and you have in your mind’s eye a vision of what
you want to create, and you need only to develop an understanding of this
new medium in order to bring your vision to reality. If any of these are true,
you have selected an excellent guide book to help you on your journey.

You are holding in your hands a book written by two people who share
two passions. Mike Bailey and Steve Cunningham both love computer graph-
ics, and they are absolutely passionate about teaching. This book allows them
to combine both of these passions into a form that is sure to benefit you, the
reader.

Actually, the word “passionate” understates the impact that Mike and
Steve have had on computer graphics education. Mike is a “lifer” in the com-
puter graphics industry. I met him some 15 years ago when we asked him to
lead an effort to define industry-standard benchmarks for computer graphics
systems (which he graciously agreed to do). He has been teaching or practic-
ing computer graphics for almost 30 years now. He has won numerous awards
as a professor of computer graphics. His dedication to educating people new
to graphics is demonstrated by the fact that he annually prepares and deliv-
ers the “Introduction to Computer Graphics” tutorial at SIGGRAPH (ACM’s
Special Interest Group on Graphics).

Steve is a similarly dedicated, accomplished, and award-winning edu-
cator. He was a co-founder of the SIGGRAPH Education Committee and co-
chaired this activity for many years. He served in countless leadership positions
in the SIGGRAPH organization and for the SIGGRAPH conference itself (the
largest, most prestigious, and longest-lived conference focusing on computer
graphics). For his lifelong efforts, he was given the 2004 ACM SIGGRAPH
Outstanding Service Award. His influence on the computer graphics industry
is global, as witnessed by the fact that he was the first Eurographics Education
Board chair and he has been named a Eurographics Fellow.

So it is certainly the case that these two authors can tell you a thing or two
about computer graphics. But even more importantly, they can tell it to you in
a way that you will understand and remember.

The topic of this book, writing shaders with the OpenGL Shading
Language, is both important and timely. OpenGL and its companion shading

Foreword

language are industry standards. This means that they are supported by a vari-
ety of hardware companies on a variety of operating environments. OpenGL
and GLSL are available on Macs, PCs, and Linux systems; on workstations,
towers, desktops, laptops, and handhelds. The goal of a standard is simple: to
make it easy for you, the programmer, to deploy your code on a diverse range
of products without requiring any changes to the source code. The resulting
portability amortizes the cost of the software development by creating a bigger
market for software products based on industry standards.

But the most important part of this book is that while it is teaching you
how to write programmable shaders, it is also teaching and reinforcing the
fundamentals of computer graphics. As a result, you will be able to easily
adapt the lessons learned here to other shading languages and graphics para-
digms. This is becoming increasingly important since the trend for graphics
hardware is to offer more general programmability and less fixed functionality
built into hardware. In other words, we are returning to the days where com-
puter graphics innovation occurs in software. The knowledge and skills that
you learn while reading this book can be adapted to the even more general
graphics programming environments of the future.

At the end of each chapter in this book, you will find some exercises that
will help develop your knowledge of graphics and programmable shading. In
that spirit, here are the exercises that I would prescribe for you:

I. Read this book.
2. Use computer graphics and programmable shading to create beauty.
3. Share your creation and your knowledge with others.

Most importantly,

4. Have fun!

Randi Rost
December 31, 2008

XXi

Preface

Does this remind you of yourself?

YOU KNOW THIS METAL
RECTANGLE FULL OF
UTTLE LIGHTS?

i

I SPEND MOST oF MY LFE
PRESSING BUTTONS TO MAKE
THE. PATTERN OF LIGHTS

CHANGE HOWEVER T WANT.

\

0%

BUT TODAY, THE PATTERN
OF LIGHTS 1S AL WROMG!

[OHGOD! TRY
PRESSING MORE

ITS NoT BUTIONS!

HELPING!

A (

http://xked.com

You have lots of great, creative ideas in your head, but can’t seem to get
the right pixels to come out onto your graphics screen. Then, you are our type
of person. And, this is your type of book.

Welcome to the second edition of Graphics Shaders: Theory and Practice. As
the name implies, this book deals with both the theory and equations behind
what shaders do, as well as lots and lots of code examples of putting the theory
into practice. To help you, this book has been printed with color throughout.
That means that the lots of examples have lots of images to go with them to
help understand the concepts. So stop and stay for a while. Put your feet up

and start reading. You are really going to enjoy this.

Xxiii

xXiv Preface

This book has over 100 more pages than the first edition did. Here are the
major improvements:

|. This book is written against the most-recent specification releases:
OpenGL 4.x and GLSL 4.x0.

. All code examples have been brought up-to-date with the current stan-
dard of the GLSL language.

There is an entire chapter (with examples) on the new tessellation shaders.

NI

All chapters have more examples and more exercises.

o1 W

Many diagrams have been improved. The ones involving GLSL function-
ality levels have been brought up to 4.x0.

6. The OpenGL Architecture Review Board (ARB) has depecated some por-
tions of OpenGL, but has not eliminated them. This edition discusses that,
and presents a strategy to write your own code with that in mind. All code
examples in this book now follow that strategy. Also, by following that
strategy, you will be prepared for migration to OpenGL-ES 2.0.

N

. Appendices have been added showing the use of C++ classes to make
writing OpenGL shader applications easier, and help with the post-dep-
recation strategy.

Programmable computer graphics shaders have had an interesting his-
tory. In not-too-distant memory, at least for some of us, all aspects of computer
graphics were programmable. In fact, “programmable” is probably not a good
term, because that implies that there was a programmability option when cre-
ating an image. There wasn't. If you wanted anything to happen, you had no
choice but to program it. Yourself. “Involuntary programmability” might be a
better way to put it.

Computer graphics APIs changed that for most graphics practitioners.
With a good API, you could write very good graphics programs much more
easily because you could let the API’s functionality take over large portions of
the graphics process. However, you paid for this in giving up any functional-
ity that the API didn’t know how to handle. A good example is surface shad-
ing, where most of the 1990s APIs could not support anything beyond simple
smooth lighted surfaces.

Fortunately, neither the computer graphics research community nor
advanced graphics practitioners were satistied with this. First in software and
then in hardware, as graphics processors were developed, specific functional-
ity was developed to support the programming of features that fixed-function
graphics APIs had fenced off. This functionality has now developed its own
standards, including the GLSL shader language that is part of the OpenGL
standard. Programmable graphics shaders, programs that can be downloaded

Preface

to a graphics processor to carry out operations outside the fixed-function pipe-
line of earlier standards, have become a key feature of computer graphics.

This process is now being paralleled in the teaching and learning of
computer graphics. Just as students usually first learned computer graph-
ics through a graphics standard, most often OpenGL, students now need to
understand the role of programmable shaders and to have experience in writ-
ing and using them. One of the remarkable things about shader-level pro-
gramming is that it brings us all back to the same kind of graphics questions
that were being examined in the 1970s. We can now manipulate vertices and
individual pixels while still having the full OpenGL API high-speed support
whenever we want to use it. This gives students and practitioners a wonderful
range of capabilities that can be used in games, in scientific visualization, and
in general graphical communication.

This book is designed to open computer graphics shader programming to
students, whether in a traditional class or on their own. It is intended to com-
plement texts based on fixed-function graphics APIs, specifically OpenGL. It
introduces shader programming in general, and specifically the GLSL shader
language. It also introduces a flexible, easy-to-use tool, glman, which helps you
develop and tune shaders outside an application that would use them.

This book is intended as a text for a second course in computer graphics at
either the undergraduate or graduate level. It is not a textbook for a first course
in computer graphics, because it assumes knowledge of not only OpenGL,
but of general graphics concepts. Knowledge of another graphics API, such as
Direct3D, will work, but we focus on GLSL and will use OpenGL terminology
consistently. Because shader programming lets you work in areas that APIs
might hide from you, sometimes you will need to work at fundamental levels
of geometry, lighting, shading, and similar concepts. You will benefit from
a prior understanding of these. You will also find that shader programming
exposes some areas of API operation that you may not have fully understood,
so you may need to review some of these details.

Our choice of GLSL as the vehicle for teaching shaders is based on its
integration into the widely-used OpenGL multiplatform API and its solid per-
formance. The concepts presented here will also help anyone who works with
other shader APIs such as Cg or HLSL, because the basic ideas of shaders
are all similar. The book is designed to take the student from a review of the
fixed-function graphics pipeline through an understanding of the basic role
and functions of shader programming to solid experience in writing vertex,
fragment, and geometry shaders for both g¢/man and actual applications.

While it might seem logical to treat shaders in the order in which they are
applied in the expanded graphics pipeline, with vertex shaders first, followed

XXV

XXVi

Preface

by geometry shaders and then fragment shaders, we have chosen to lay out
their order a little differently. Again, it might seem logical to treat shaders in
the order of frequency of use, with fragment shaders first, followed by vertex
shaders and then geometry shaders, but that also does not quite seem to work.
Because many of the operations of a fragment shader depend on things that
come out of a vertex shader, we treat vertex shaders first, followed by frag-
ment shaders, and finally geometry and tessellation shaders.

The overall outline of the text is straightforward. In the first chapters,
which make up the background for the rest of the book, we begin by covering
the fixed-function graphics pipeline of OpenGL in Chapter 1, and OpenGL
shader evolution in Chapter 2. We then present the basic principles of vertex,
fragment, geometry, and tessellation shaders in Chapter 3, including several
examples, using the GLSL shader language. Chapter 4 introduces the glman
tool with a kind of mini-manual on its use. Finally, Chapter 5 presents the
GLSL shader language and discusses its similarities and differences from the
C programming language.

The next set of chapters sets up vertex and fragment shader concepts.
Chapter 6 covers lighting from the point of view of shaders and introduces
the ADS (ambient, diffuse, specular) lighting function that we will use several
times in later chapters. This is fundamental in both vertex and fragment shad-
ers, since vertex shaders often need to compute lighting for each vertex, and
fragment shaders may want to compute lighting for each pixel. In Chapter 7
we cover vertex shaders, emphasizing their inputs and outputs as well as
the ways they can be used to modify vertex geometry. Finally, in Chapter 8
we cover fragment shaders, again emphasizing their inputs and outputs and
showing how they can be used to replace the usual fixed-function fragment
operations.

The next three chapters discuss particular capabilities of fragment shad-
ers. In Chapter 9 we describe the way fragment shaders handle texture map-
ping, including bump mapping, cube mapping, and rendering a scene to a
texture. Chapter 10 discusses noise functions and their role in writing textures
and shaders, and introduces a tool, noisegraph, that lets you experiment with
the properties of 1D and 2D noise functions. Finally, Chapter 11 examines
some ways you can manipulate 2D images, treated as textures, with the tools
that fragment shaders make available.

Chapter 12 presents geometry shaders, including how they are related to
vertex and fragment shaders as well as their own capabilities. Several exam-
ples highlight the way geometry shaders can expand the geometric capability
of your models or show the capability of geometry shaders to handle sim-
ple level-of-detail operations. Chapter 13 discusses tessellation shaders. We

Preface

show how they are somewhat similar to geometry shaders but have important
enhancements.

The final set of chapters focuses on computer graphics shaders in appli-
cations. Chapter 14 describes the GLSL API that lets you compile, link, and
use shaders in an application. It also discusses passing data and graphics
state information to shader programs and introduces a simple C++ class that
encapsulates the process of incorporating shader programs in an application.
In Chapter 15, we focus on how shaders can be used in scientific visualiza-
tion applications, and show examples of a number of specific visualization
operations. And in Chapter 16 we explore some fun things you can do with
computer graphics shaders, under the guise of getting real work done. (Don’t
tell anyone.)

Four appendices have been added showing the use of C++ classes to help
write OpenGL applications and handle some of the post-deprecation chal-
lenges.

While many of the topics in this text are straightforward, some are
tricky or deserve special attention. We have followed the lead of the Nicholas
Bourbaki mathematics texts of the early 20" century and have highlighted
these with a “dangerous curves ahead” sign as shown to the right. We hope
this will help you notice these points.

Because shader functions are changing, there are times when we want to
highlight things that have evolved or things we introduce to deal with these
changes. We have used a second sign, shown at right, to draw your attention
to these points.

We are confident that the tools and capabilities we describe in this book
will both make you a better graphics programmer and make graphics pro-
gramming a much more interesting experience for you. As OpenGL evolves
toward the future and shaders become the only way that geometry and ren-
dering are handled, we believe that you will find this text to be an invaluable
guide.

Thanks

The authors of this book owe thanks to a number of people, primarily on Mike
Bailey’s side.

To faculty colleagues at Oregon State University for their support and
camaraderie: Ron Adams, Bella Bose, Terri Fiez, Karti Mayaram Ron Metoyer,
Eric Mortensen, Cherri Pancake, Sinisa Todorovic, and Eugene Zhang,.

XXVii

' b

xxviii

Preface

To the superbly talented UCSD and OSU graphics students who have
shared this shader expedition: Tim Bauer, William Brendel, Guoning Chen,
Matt Clothier, John Datuin, Will Dillon, Jonathan Dodge, Chuck Evans,
Nick Gebbie, Kyle Hatcher, Nick Hogle, Chris Janik, Ankit Khare, Vasu
Lakshmanan, Adam Leibel, Jessica McGregor, Daniel Moffitt, Chris Moore,
Patrick Neill, Jonathan Palacios, Nadia Payet, Randy Rauwendaal, Dwayne
Robinson, Avneet Sandhu, Nick Schultz, Sudarshanram Shetty, Evon Silvia,
Ian South-Dickinson, Madhu Srinivasan, Michael Tichenor, Christophe Torne,
Ben Tribelhorn, Ben Weiss, and Alex Wiggins.

To professional colleagues: Ryan Bailey, Mike Gannis, Jenny Orr, Todd
Shechter, and Justin Spencer.

To the folks at NVIDIA for their support, especially Gary Brown, Greg
Gritton, Jen-Hsun Huang, David Kirk, Dave Luebke, and David Zier.

To the folks at AMD/ATI for their support, especially Bill Licea-Kane.

To Randi Rost, for his support from positions at both 3D Labs and Intel,
and for writing his “Orange Book,” from which so much of what went into this
book was learned.

To Paramount Pictures for their permission to reprint the image in
Figure 2.2. and to Pixar for providing the original image.

To xked.com for the comic used at the front of this Preface.

We also thank Alice Peters and Sarah Cutler for their advice and assis-
tance in developing this project, and the reviewers for helping us refine some
key points in the text.

Mike Bailey Steve Cunningham
Corvallis, Oregon Coralville, Iowa

Contents

Foreword XiXx

Preface XXiii

b

The Fixed-Function Graphics Pipeline

The Traditional View

The Vertex Operation

The Fragment Processing Part of the Pipeline
State in the Graphics Pipeline

~NoN N

vii

5.

Contents

The GLSL Shader Language

Factors that Shape Shader Languages
Graphics Card Capabilities

General GLSL Language Concepts

Shared Namespace

Extended Function and Operator Capabilities
New Functions

New Variable Types

New Function Parameter Types

Language Details

Omitted Language Features

New Matrix and Vector Types

Name Sets

Vector Constructors

Functions Extended to Matrices and Vectors
Operations Extended to Matrices and Vectors
New Functions

Swizzle

New Function Parameter Types

Const

Compatibility Mode

Defining Compatibility Mode
OpenGL 2.1 Built-in Data Types

Summary

Exercises

Lighting

The ADS Lighting Model
The ADS Lighting Model Function

Types of Lights

Positional Lights
Directional Lights
Spot Lights

91

92
93

95

95
96
97
97
98

98

98

99
100
101
102
105
106
112
112
113

114

114
114

120

120

123

124
125

127

128
128
129

Contents xi

Setting Up Lighting for Shading 131
Flat Shading 132
Smooth (Gouraud) Shading 133
Phong Shading 134
Anisotropic Shading 135

Exercises 137

7. Vertex Shaders 139

Vertex Shaders in the Graphics Pipeline 140
Input to Vertex Shaders 140
Output from Vertex Shaders 142
Fixed-Function Processing After the Vertex Shader 145
The Relation of Vertex Shaders to Tessellation Shaders 146
The Relation of Vertex Shaders to Geometry Shaders 146

Replacing Fixed-Function Graphics with Vertex Shaders 146
Standard Vertex Processing 147

Going Beyond the Fixed-Function Pipeline with Vertex Shaders 148

Vertex Modification 148
Issues in Vertex Shaders 151
Creating Normals 152
Summary 153
Exercises 154

8. Fragment Shaders and Surface Appearance 157
Basic Function of a Fragment Shader 158
Inputs to Fragment Shaders 158
Particularly Important “In" Variables for the Fragment Shader 161

Coordinate Systems 162

