Energy Production and Storage

Inorganic Chemical Strategies for a Warming World

ENERGY PRODUCTION AND STORAGE

Inorganic Chemical Strategies for a Warming World

EIC Books

EIC Books

Application of Physical Methods to Inorganic and Bioinorganic Chemistry Edited by Robert A. Scott and Charles M. Lukehart ISBN 978-0-470-03217-6

Nanomaterials: Inorganic and Bioinorganic Perspectives Edited by Charles M. Lukehart and Robert A. Scott ISBN 978-0-470-51644-7

Computational Inorganic and Bioinorganic Chemistry
Edited by Edward I. Solomon, R. Bruce King and Robert A. Scott
ISBN 978-0-470-69997-3

Radionuclides in the Environment Edited by David A. Atwood ISBN 978-0-470-71434-8

Energy Production and Storage Robert H. Crabtree ISBN 978-0-470-74986-9

Encyclopedia of Inorganic Chemistry

In 1994 John Wiley & Sons published the *Encyclopedia of Inorganic Chemistry* (EIC). This 8-volume work was well received by the community, and has become a standard publication in all libraries serving the inorganic, coordination chemistry, organometallic and bioinorganic communities. The 10-volume Second Edition of the *Encyclopedia* was published in print in 2005, and online in 2006, on the major reference platform Wiley Online Library. The online edition is regularly updated and expanded. For more information see:

ENERGY PRODUCTION AND STORAGE

Inorganic Chemical Strategies for a Warming World

Editor

Robert H. Crabtree

Yale University, New Haven, CT, USA

This edition first published 2010 © 2010 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the authors to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Energy production and storage: inorganic chemical strategies for a warming world / editor, Robert H. Crabtree.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-74986-9 (cloth: alk. paper)

 Hydrogen as fuel--Research. 2. Water resources development. 3. Renewable energy sources. 4. Environmental chemistry. 5. Carbon sequestration. I. Crabtree, Robert H., 1948-TP359.H8E54 2010

621.042--dc22

2010025736

A catalogue record for this book is available from the British Library.

ISBN-13: 978-0-470-74986-9

Set in $9\frac{1}{2}/11\frac{1}{2}$ pt TimesNewRomanPS by Laserwords (Private) Limited, Chennai, India. Printed and bound in Singapore by Markono Print Media Pte Ltd.

Encyclopedia of Inorganic Chemistry

Editorial Board

Editor-in-Chief

Robert H. Crabtree Yale University, New Haven, CT, USA

Section Editors

David A. Atwood University of Kentucky, Lexington, KY, USA

R. Bruce King *University of Georgia, Athens, GA, USA*

Charles M. Lukehart Vanderbilt University, Nashville, TN, USA

Robert A. Scott University of Georgia, Athens, GA, USA

International Advisory Board

Michael Bruce Adelaide, Australia

Fausto Calderazzo Pisa, Italy

Tristram Chivers Calgary, Canada

Odile Eisenstein Montpellier, France

C. David Garner Nottingham, UK

Malcolm Green Oxford, UK

Wolfgang Herrmann Munich, Germany

Jean-Marie Lehn Strasbourg, France

François Mathey

University of California Riverside,

CA, USA

Akira Nakamura Osaka, Japan

Jan Reedijk

Leiden, The Netherlands

Vivian Yam Hong Kong

Contributors

M. Consuelo Alvarez-Galvan

Institute of Catalysis and Petrochemistry, CSIC, Cantoblanco, Madrid, Spain

• H₂ Production from Renewables

Luísa Andrade

Universidade do Porto, Porto, PortugalDye-Sensitized Solar Cells: an Overview

Shamindri M. Arachchige

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

• Photocatalytic Hydrogen Production from Water

Shane Ardo

Johns Hopkins University, Baltimore, MD, USA

 Recent Advances in Photo-Initiated Electron-Transfer at the Interface between Anatase TiO₂ Nanocrystallites and Transition-Metal Polypyridyl Compounds

Alan Atkinson

Imperial College London, London, UK

• Intermediate-Temperature Solid Oxide Fuel Cells

Saeed M. Al-Zaharani

King Saud University, Riyadh, Saudi Arabia

H₂ Production from Renewables

Frédéric Barrière

Université de Rennes 1, France

Enzymes and Microbes for Energy Production by Fuel Cells

Victor S. Batista

Yale University, New Haven, CT, USA

Some Computational Challenges in Energy Research

Steven M. Bischof

The Scripps Research Institute, Jupiter, FL, USA

• Methane-to-Methanol Conversion

Nigel P. Brandon

Imperial College London, London, UK

• Intermediate-Temperature Solid Oxide Fuel Cells

Dan J. L. Brett

Imperial College London and University College London, London, UK

• Intermediate-Temperature Solid Oxide Fuel Cells

Karen J. Brewer

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Photocatalytic Hydrogen Production from Water

Gary W. Brudvig

Yale University, New Haven, CT, USA

Energy Conversion in Photosynthesis

Jordi Cabana

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

• Lithium Ion Batteries for Transportation and Electrical Energy Storage Applications: Nuclear Magnetic Resonance Studies of Structure and Function

Zhi Wen Chia

National University of Singapore, Singapore

· Direct Ethanol Fuel Cells

Robert H. Crabtree

Yale University, New Haven, CT, USA

• Electrochemical and Photoelectrochemical Conversion of CO₂ to Alcohols

Ram Devanathan

Pacific Northwest National Laboratory, Richland, WA, USA

Proton Exchange Membranes for Fuel Cells

Peter P. Edwards

University of Oxford, Oxford, UK

Hydrogen Economy

Jose Luis G. Fierro

Institute of Catalysis and Petrochemistry, CSIC, Cantoblanco, Madrid, Spain

H₂ Production from Renewables

Clare P. Grey

Stony Brook University, Stony Brook, NY, USA and University of Cambridge, Cambridge, UK

Lithium Ion Batteries for Transportation and Electrical Energy Storage Applications:
 Nuclear Magnetic Resonance Studies of Structure and Function

Leif Hammarström

Uppsala University, Uppsala, Sweden

• Toward Solar Fuels Using a Biomimetic Approach: Progress in the Swedish Consortium for Artificial Photosynthesis

Brian G. Hashiguchi

The Scripps Research Institute, Jupiter, FL, USA

• Methane-to-Methanol Conversion

Claas H. Hövelmann

The Scripps Research Institute, Jupiter, FL, USA

Methane-to-Methanol Conversion

Olof Johansson

Uppsala University, Uppsala, Sweden

 Toward Solar Fuels Using a Biomimetic Approach: Progress in the Swedish Consortium for Artificial Photosynthesis

John Kilner

Imperial College London, London, UK

• Intermediate-Temperature Solid Oxide Fuel Cells

Vladimir L. Kuznetsov

University of Oxford, Oxford, UK

Hydrogen Economy

Jim Yang Lee

National University of Singapore, Singapore

Direct Ethanol Fuel Cells

Zhibin Lei

National University of Singapore, Singapore

Supercapacitors: Electrode Materials Aspects

Chin Hin Leung

The Scripps Research Institute, Jupiter, FL, USA

Methane-to-Methanol Conversion

Antoni Llobet

Institute of Chemical Research of Catalonia (ICIQ) and Universitat Autònoma de

Barcelona, Barcelona, Spain

Molecular Catalysts for Oxygen Production from Water

Kapil S. Lokare

The Scripps Research Institute, Jupiter, FL, USA

Methane-to-Methanol Conversion

Brett L. Lucht

University of Rhode Island, Kingston, RI, USA

• Thermal Stability of Lithium Ion Battery Electrolytes

Tippawan Markmaitree

University of Rhode Island, Kingston, RI, USA

• Thermal Stability of Lithium Ion Battery Electrolytes

Adélio Mendes

Universidade do Porto, Porto, Portugal

• Dye-Sensitized Solar Cells: an Overview

Gerald J. Meyer

Johns Hopkins University, Baltimore, MD, USA

 Recent Advances in Photo-Initiated Electron-Transfer at the Interface between Anatase TiO₂ Nanocrystallites and Transition-Metal Polypyridyl Compounds

Rufino M. Navarro

Institute of Catalysis and Petrochemistry, CSIC, Cantoblanco, Madrid, Spain

H₂ Production from Renewables

Sascha Ott Uppsala University, Uppsala, Sweden

Toward Solar Fuels Using a Biomimetic Approach: Progress in the Swedish

Consortium for Artificial Photosynthesis

Kenichi Oyaizu Waseda University, Tokyo, Japan

Molecular Catalysis for Fuel Cells

Roy A. Periana The Scripps Research Institute, Jupiter, FL, USA

• Methane-to-Methanol Conversion

Helena Aguilar Ribeiro Universidade do Porto, Porto, Portugal

• Dye-Sensitized Solar Cells: an Overview

Sophie Romain Institute of Chemical Research of Catalonia (ICIQ), Barcelona, Spain

• Molecular Catalysts for Oxygen Production from Water

M. Cruz Sanchez-Sanchez

Institute of Catalysis and Petrochemistry, CSIC, Cantoblanco, Madrid, Spain

• H₂ Production from Renewables

Asel Sartbaeva University of Oxford, Oxford, UK

• Hydrogen Economy

Stephen Skinner Imperial College London, London, UK

• Intermediate-Temperature Solid Oxide Fuel Cells

Stenbjörn Styring Uppsala University, Uppsala, Sweden

• Toward Solar Fuels Using a Biomimetic Approach: Progress in the Swedish

Consortium for Artificial Photosynthesis

Ali T-Raissi University of Central Florida, Orlando, FL, USA

• Thermochemical Water-Splitting

Xiaoning Tian National University of Singapore, Singapore

• Supercapacitors: Electrode Materials Aspects

Gözde Ulas Yale University, New Haven, CT, USA

Energy Conversion in Photosynthesis

Stephen A. Wells University of Warwick, Coventry, UK

Hydrogen Economy

Li Yang University of Rhode Island, Kingston, RI, USA

• Thermal Stability of Lithium Ion Battery Electrolytes

Jintao Zhang National University of Singapore, Singapore

• Supercapacitors: Electrode Materials Aspects

Li Li Zhang National University of Singapore, Singapore

Supercapacitors: Electrode Materials Aspects

Xiu Song Zhao National University of Singapore, Singapore

• Supercapacitors: Electrode Materials Aspects

Series Preface

The success of the *Encyclopedia of Inorganic Chemistry* (EIC) has been very gratifying to the editors. We felt, however, that not everyone would necessarily need access to the full ten volumes of EIC. Some readers might prefer to have more concise thematic volumes targeted to their specific area of interest. This idea encouraged us to produce a series of EIC Books, focusing on topics of current interest. These will continue to appear on a regular basis and will feature the leading scholars in their fields. Like the Encyclopedia, we hope that EIC Books will give both the starting research student and the confirmed research worker a critical distillation of the leading concepts and provide a structured entry into the fields covered.

Computer literature searches have become so easy that one could be led into thinking that the problem of efficient access to chemical knowledge is now solved. In fact, these searches often produce such a vast mass of material that the reader is overwhelmed. As Henry Kissinger has remarked, the end result is often a shrinking of one's perspective. From studying the volumes that comprise the EIC Books

series, we hope that readers will find an expanding perspective to furnish ideas for research, and a solid, up-to-date digest of current knowledge to provide a basis for instructors and lecturers.

I take this opportunity of thanking Bruce King, who pioneered the *Encyclopedia of Inorganic Chemistry*, my fellow editors, as well as the Wiley personnel, and, most particularly, the authors of the articles for the tremendous effort required to produce such a series on time. I hope that EIC Books will allow readers to benefit in a more timely way from the insight of the authors and thus contribute to the advance of the field as a whole.

Robert H. Crabtree Yale University, New Haven, CT, USA

January 2009

Volume Preface

Energy production and storage are central problems for our time and are likely to attract intense public attention during many future decades. One factor will be the gradual decline in world petroleum production, as we pass the moment of peak production at some point in the next few years. The petroleum age is not over, of course, but the era of cheap petroleum does seem to be over. Oil wealth can also be associated with political instability, with unpredictable results on supply. A new factor—the economic rise of Asia and her vast population—can only aggravate the situation. Coal, the fossil fuel with the greatest reserves and with the broadest geographical distribution, may be able to fill any future energy supply gap but only at the cost of environmental damage at the mine and more intense CO₂ emissions—coal having the highest CO₂ output per unit of energy produced. Carbon capture and storage is under intense study but its practicality as a low-carbonfootprint means of using coal is still under discussion. Natural gas has been widely acclaimed as the best of the fossil fuels, having the lowest CO2 output per unit of energy produced. Hopes exist that abundant and widely distributed shale gas, previously considered uneconomic, may become viable with rising energy prices and new production methods.

A key factor that has intensified the growing unease over our current energy production system is the threat of climate change. David King, the UK Government's Chief Science Advisor from 2000 to 2007, has even called climate change "the single biggest challenge our civilization has ever had to face." Nuclear energy is a potential solution but the problem of waste management has not yet been satisfactorily solved.

This volume is particularly concerned with alternative energy production and storage. Abundant energy is, in principle, available from the sun to run the earth in a sustainable way. Solar energy can be directly harnessed by agricultural and photovoltaic means but the sheer scale of the energy demand poses severe challenges. For example, any major competition between biomass production and food production would simply transfer scarcity from energy to food. Indirect use of solar energy in the form of wind is also promising, especially for those regions not blessed with abundant sunlight. Other modes such as tidal and wave energy may well be niche players.

These are problems in which chemistry can play a decisive role. The present volume covers some promising

modes of alternative energy production and storage that minimize the atmospheric burden of fossil-derived CO₂. No one production or storage mode is likely to dominate, at least at first, and numerous possibilities need to be explored to compare their technical feasibility and economics. This provides the context for a broad exploration of novel ideas that we are likely to see in future years as the field expands.

Water splitting is a central problem in alternative energy work. Only water is a sufficiently cheap and abundant electron source for global exploitation, as Jules Verne foresaw in his 1874 novel, The Mysterious Island, "water will be the coal of the future." Of course, both energy input and suitable catalysts are needed to split water into oxygen and either hydrogen or electrons and protons. In this context, Brudvig and coauthors discuss energy conversion in photosynthesis, Llobet and coauthors cover molecular water splitting catalysts, Brewer and coauthors consider photocatalytic hydrogen production from water and T-Raissi covers thermochemical water splitting. Johannson and coauthors discuss recent progress in the Swedish Consortium for Artificial Photosynthesis. Batista discusses the progress made in computational modeling of energy-related processes including photosynthesis.

Several articles concentrate on hydrogen, notably a key contribution on the hydrogen economy by Edwards and coauthors and on hydrogen production from renewables by Fierro and coauthors.

A number of important chemical conversions are covered, for example reduction of CO_2 to useful fuels either electrochemically or photochemically, as well as conversion of methane to methanol by Periana and coauthors.

Dye-sensitized solar cells for the direct conversion of solar to electrical energy is reviewed by Mendes and coauthors. Related to this problem, Meyer and coauthors discuss photoinitiated electron transfer in such cells.

A number of articles relate to fuel cells. Devanathan discusses the key problem of devising efficient proton exchange membranes, Brett covers intermediate temperature solid oxide fuel cells, Lee considers direct ethanol fuel cells, Oyaizu considers molecular catalysis for fuel cells, and Barrière covers the use of enzymes and microbes in fuel cells.

Batteries are also considered. Lucht and coauthors discuss Li ion batteries, Grey and coauthors cover L-6 MAS NMR studies on battery materials, and Zhao reviews the

Contents

Contributors	IX
Series Preface	xiii
Volume Preface	XV
PART 1: ENERGY PRODUCTION	1
H₂ Production from Renewables Rufino M. Navarro, M. Cruz Sanchez-Sanchez, M. Consuelo Alvarez-Galvan, Jose Luis G. Fierro and Saeed M. Al-Zaharani	3
Energy Conversion in Photosynthesis Gözde Ulas and Gary W. Brudvig	21
Molecular Catalysts for Oxygen Production from Water Antoni Llobet and Sophie Romain	35
Dye-Sensitized Solar Cells: an Overview Luísa Andrade, Helena Aguilar Ribeiro and Adélio Mendes	53
Enzymes and Microbes for Energy Production by Fuel Cells Frédéric Barrière	73
Proton Exchange Membranes for Fuel Cells Ram Devanathan	89
Methane-to-Methanol Conversion Brian G. Hashiguchi, Claas H. Hövelmann, Steven M. Bischof, Kapil S. Lokare, Chin Hin Leung and Roy A. Periana	101
Photocatalytic Hydrogen Production from Water Shamindri M. Arachchige and Karen J. Brewer	143
Intermediate-Temperature Solid Oxide Fuel Cells Alan Atkinson, John Kilner, Stephen Skinner, Nigel P. Brandon and Dan J. L. Brett	173
Some Computational Challenges in Energy Research Victor S. Batista	191
Toward Solar Fuels Using a Biomimetic Approach: Progress in the Swedish Consortium for Artificial Photosynthesis Sascha Ott, Stenbjörn Styring, Leif Hammarström and Olof Johansson	199
Direct Ethanol Fuel Cells Zhi Wen Chia and Jim Yang Lee	229

VIII CONTENTS

Molecular Catalysis for Fuel Cells Kenichi Oyaizu	253
Recent Advances in Photo-Initiated Electron-Transfer at the Interface between Anatase TiO ₂ Nanocrystallites and Transition-Metal Polypyridyl Compounds Shane Ardo and Gerald J. Meyer	265
Electrochemical and Photoelectrochemical Conversion of CO ₂ to Alcohols Robert H. Crabtree	301
PART 2: ENERGY STORAGE	307
Hydrogen Economy Stephen A. Wells, Asel Sartbaeva, Vladimir L. Kuznetsov and Peter P. Edwards	309
Thermal Stability of Lithium Ion Battery Electrolytes Brett L. Lucht, Tippawan Markmaitree and Li Yang	333
Supercapacitors: Electrode Materials Aspects Li Li Zhang, Zhibin Lei, Jintao Zhang, Xiaoning Tian and Xiu Song Zhao	341
Thermochemical Water-Splitting Ali T-Raissi	365
Lithium Ion Batteries for Transportation and Electrical Energy Storage Applications: Nuclear Magnetic Resonance Studies of Structure and Function Jordi Cabana and Clare P. Grey	375
Index	393

PART 1 Energy Production

H₂ Production from Renewables

Rufino M. Navarro, M. Cruz Sanchez-Sanchez, M. Consuelo Alvarez-Galvan and Jose Luis G. Fierro

Institute of Catalysis and Petrochemistry, CSIC, Cantoblanco, Madrid, Spain

and

Saeed M. Al-Zaharani

King Saud University, Riyadh, Saudi Arabia

1	Introduction	3
2	Hydrogen Production from Biomass	4
3	Hydrogen from Solar Energy	9
4	Conclusions	16
5	Acknowledgments	17
6	Related Articles	17
7	Abbreviations and Acronyms	17
8	Further Reading	17
9	References	17

1 INTRODUCTION

Energy and environmental concerns are among the biggest challenges that the world is facing today, in particular, energy sustainability and carbon emission from the fossil fuels. Hydrogen is considered as one of the few long-term sustainable clean energy carriers, emitting only water vapor as a by-product during its oxidation or combustion. Although hydrogen can be used as a fuel in internal combustion engines (ICEs), the conversion of the chemical energy stored in the H–H bond into electricity in fuel cells is more attractive because of its higher efficiency.¹

Production of H₂ by the currently available technologies consumes greater amounts of natural gas, which in turn emits more greenhouse gas (GHG). However, in spite of using nonrenewable fossil fuel feedstock, the increase in GHG emissions can be reduced through CO₂ sequestration at the production sites. Production of H₂ from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net GHG emissions, without carbon sequestration technologies, increasing the flexibility and improving the economics of distributed and semicentralized reforming.

At present, steam reforming of hydrocarbons, i.e., natural gas, is the most commonly used and generally the most economical method for hydrogen production.²⁻⁵ The use of natural gas, whose major component is methane, fails to provide a solution to deal with the large amount of carbon dioxide emissions (ca 7 kg CO₂/kg H₂) during the reforming processes. In addition, the use of fossil fuels for secondary energy production is nonsustainable. Not only does fossil fuel burning contribute to the GHG pool but the eventual depletion of the world's fossil fuel reserves also threatens sustainable development. 6,7 However, hydrogen production can be environmentally friendly only if the resource used to extract hydrogen is renewable. Thus, biomass, a product of photosynthesis, is an attractive alternative to fossil feedstocks as it can be considered as a renewable H₂ precursor. CO₂-neutral hydrogen can be produced by the conversion of biomass via gasification,8 pyrolysis of biooils,9 steam reforming of biomass-derived higher alkanes and alcohols, 2,5,10 and aqueous phase reforming (APR) of oxygenated hydrocarbons.11 Biomass-derived hydrogen can be classified as carbon neutral because the CO2 released during hydrogen production is further consumed by biomass generation (neglecting the CO₂ produced from the fossil fuel energy required for operating the hydrogen production unit). 12

Among the methods for H_2 generation outside the C-cycle, hydrogen production using solar energy also attracts great attention because of the potential to use the abundance of this energy (the maximum direct insolation frequently reaches ca $700 \, \mathrm{W \, m^{-2}}$ in the sunbelt regions) and water. Thermodynamically, the overall water-splitting reaction is an uphill reaction, with a highly positive change in Gibbs free energy ($\Delta G^0 = +237.2 \, \mathrm{kJ \, mol^{-1}}$):

$$H_2O(1) \longrightarrow H_2(g) + \frac{1}{2}O_2(g) \quad (\Delta G^0 = +237.2 \text{ kJ mol}^{-1}) \quad (1)$$

Solar energy can be used to produce hydrogen in the form of heat (thermochemical), light (photoelectrochemical or photocatalytic), or electricity (electrolysis). Among these, thermochemical, photoelectrochemical, and photocatalytic are the most efficient solar paths to hydrogen since they do not have the inefficiencies associated with the conversion of solar energy to electricity followed by electrolysis.

In this article, we review the recent developments in the conversion involved in hydrogen production from less costly and abundant biomass without net carbon emissions. In addition, this article includes advances in the fully renewable conversion of solar energy into hydrogen via the water-splitting process assisted by thermochemical, photolectrochemical, and photocatalytic processes. Attention is particularly given to the new materials and strategies reported in the literature over the past years for developing efficient metal oxide redox cycles for a two-step thermochemical water splitting, efficient photoelectrocatalysts under visible light photocatalysts for hydrogen evolution via photoelectrochemical water splitting, and efficient photocatalysts under visible light for the photochemical water splitting.

2 HYDROGEN PRODUCTION FROM BIOMASS

Figure 1 illustrates the different routes that can be adopted to produce hydrogen from biomass, including

gasification to produce syngas, pyrolysis to produce bio-oils, and hydrolysis of cellulose to produce sugar monomers. 13 syngas can be converted to hydrogen by water gas shift (WGS) reaction, though any remaining CO must be removed from the gas stream. Pyrolysis bio-oil can be converted to liquid fuel, but the processes are complex and the rate of conversion is low. Hydrogen can be produced from the bio-oil by autothermal reforming with high conversion efficiency, especially with the use of catalytic membrane reactors. APR can be used to convert sugars and sugar alcohols, such as sorbitol, to produce hydrogen. In addition to these, there are other biological (enzymatic and bacterial) routes to produce hydrogen, but the scope of this article is restricted only to the heterogeneous catalytic routes.

2.1 Gasification

Biomass gasification is achieved at temperatures above 1000 K in the presence of oxygen/air and/or steam. A combination of pyrolysis, partial oxidation, and/or steamreforming reactions of gaseous alkanes and char takes place under these conditions. The presence of oxygen or air in the gasification equipment promotes partial oxidation over pyrolysis reactions. Although gaseous products (H_2 and CO_x) are mainly obtained, the fast pyrolysis reactions can also produce bio-oils, tar (aromatic hydrocarbons), and charcoal. Several parameters such as heating rate, temperature, and residence time can be optimized to maximize the efficiency of gasification with minimum tar formation. Thermal cracking of the tar is possible at temperatures above 1300 K¹⁴ and by using catalytic additives such as dolomite, olivine, and char, 15 with 100% removal of tar by using dolomite as the gasifying agent. 16 Moreover, dolomite and CeO₂/SiO₂-supported Ni, Pt, Pd, Ru, and alkaline metal oxides can be used to catalyze the gasification process to reduce tar formation and improve the product gas purity and conversion efficiency. ¹⁷ Although Rh/CeO₂/SiO₂ has been reported to be the most effective catalyst to reduce tar formation, Ni-based catalysts are also highly active for tar destruction. Since Ni-based catalysts are industrially used for steam reforming of methane and naphtha,⁵

Figure 1 Routes to the production of hydrogen from biomass