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NEW FEATURES

PREFACE

My goal for the fifth edition was to achieve a balance between the concepts
and presentation of materials that appealed to users of previous editions and
the substantive changes made to strengthen and modernize the text. I feel I
have achieved this balance, thus enabling the text to appeal to an even wider
audience. Many of the additions and changes are the result of user and re-
viewer comments and suggestions. Moreover, these changes were made with
the ultimate audience in mind—the students who will be using it. For this
reason, solutions of every example have been read with an eye to improving
their clarity. In various places I have either added further explanations where
I thought they might be helpful, or “guidance boxes” at crucial points in the
flow of the solution.

Some new features, that I hope students will find both interesting and motiva-
tional, have been added to the text. Essays written by mathematicians promi-
nent in their specialty are included after Chapters 3, 4, 5, and 9. Each essay
reflects the thoughts, creativity, and opinions of the individual author and is
intended to enhance the material found in the preceding chapter. It is my
hope that the addition of these essays will spark the interest of the students,
encourage them to read mathematics, and help them to gain a realization that
differential equations is not simply a dry collection of methods, facts, and
formulas, but a vibrant field in which people can, and do, work.

Color inserts also have been added at intervals in the text. These pages
consist of illustrations matched with photographs relating to some of the
applications found in the text. I feel that these contribute to the visualization
of the applications and thereby provide an added insight to students.

CHANGES INTHIS EDITION

e Section 1.2 is now devoted solely to the concept of a differential equa-
tion as a mathematical model.

e The material on the differential equation of a family of curves has
been deleted. A brief discussion of this concept is now given in Sec-
tion 3.1 (Orthogonal Trajectories).

e The method of undetermined coefficients is one of the more contro-
versial topics in a course in differential equations. In the last three
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PREFACE

editions, this topic was developed from the viewpoint of using a dif-
ferential annihilator as an aid in determining the correct form of a
particular solution. While preparing this revision, a substantial num-
ber of reviewers indicated that the annihilator approach was too
sophisticated for their students and requested a simpler rule-based
approach. Other reviewers, however, desired no change. In order to
satisfy each of these preferences, both approaches are presented in
this edition. The instructor can now choose between undetermined
coefficients based on the superposition principle for nonhomoge-
neous linear differential equations (Section 4.4) or those based on the
concept of differential annihilators (Section 4.6). Moreover, the
notion of a differential operator is now introduced in a separate sec-
tion (Section 4.5) Thus, covering Section 4.4 does not preclude cov-
erage of the otherwise useful concept of a differential operator.

The review of power series in Section 6.2 has been greatly expanded.
A discussion of the arithmetic of powers series (addition, multiplica-
tion, and division of series) has been added.

A brief discussion of the “cover-up method” for determining coeffi-
cients in a partial fraction decomposition and a historical note on
Oliver Heaviside have been added to Section 7.2.

The discussion on the operational properties of the Laplace transform
has now been divided into two sections: Section 7.3, Translation The-
orems and Derivatives of Transforms, and Section 7.4, Transforms
of Derivatives, Integrals, and Periodic Functions. This separation
allows for a clearer, more comprehensive treatment of these topics.

Gaussian elimination, in addition to Gauss-Jordan elimination, is
now discussed in Section 8.4. The notation for indicating row opera-
tions on an augmented matrix has been improved.

Chapter 9, “Numerical Methods for Ordinary Differential Equa-
tions,” has been significantly expanded and partially rewritten. The
Adams-Bashforth/Adams-Moulton multistep method has been
added to Section 9.5. Section 9.6, Errors and Stability, and Section 9.8,
Second-Order Boundary-Value Problems, are new to this edition.

The BASIC programs previously in Chapter 9 have been deleted.
Instead, we offer these programs, along with their FORTRAN and
Pascal versions, on disk.

Chapter 10, on partial differential equations and Fourier series, has
been eliminated from this edition. It was the consensus of users that
this material was unnecessary in a beginning course. The topics:
Fourier series, partial differential equations, and solutions of
boundary-value problems by separation of variables, integral trans-
forms, and numerical methods, are covered in detail in the expanded
version of this text, Differential Equations with Boundary-Value
Problems, Third Edition.



PREFACE xiii

® New problems, applications, illustrations, remarks, and historical
footnotes, have been added throughout the text.

SUPPLEMENTS AVAILABLE

For Instructors

® Complete Solutions Manual, Warren S. Wright, Loyola Marymount
University. This manual contains complete, worked-out solutions to
every problem in the text.

For Students

® Student Solutions Manual, Warren S. Wright. This manual provides
solutions to every third problem in each exercise set.

Software

o Computer Programs, C. J. Knickerbocker, St. Lawrence University.
This disk contains a listing of computer programs for many of the
numerical methods considered in this text. Each program is written
in three languages: BASIC, FORTRAN, and Pascal. (For IBM or
MAC.)

e The Grapher, Steve Scarborough, Loyola Marymount University. For
the Macintosh, this flexible program can generate graphs of equa-
tions in rectangular and polar coordinates as well as curves defined
parametrically. In addition, it has routines for graphing: series, in-
terpolating polynomials, direction fields, and numerical solutions of
differential equations. The updated version also contains numerical
integration and numerical root finding.

Dennis G. Zill
Los Angeles
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INTRODUCTIONTO
DIFFERENTIAL EQUATIONS

1.1 Basic Definitions and
Terminology
[0] 1.2 Some Mathematical Models

Chapter 1 Review
Chapter 1 Review Exercises

The words differential and equations certainly suggest

solving some kind of equation that contains derivatives.
Important Concepts So it is; in fact, the preceding sentence tells the
complete story about the course that you are about

Ordinary differential

equation to begin. But before you start solving anything, you
P’?;t;‘ggf""ﬁ’l must learn some of the basic definitions and terminol-
Order of an equation ogy of the subject. This is what Section |.1 is all about.
Linear equation Section 1.2 is intended to be motivational. Why should
Nonlinear equation you, an erstwhile scientist or engineer, study this
Solution subject? The answer is simple: Differential equations
Trivial solution are the mathematical backbone of many areas of
Explicit and implicit ’ : a 4 :

solutions science and engineering. Hence, in Section |.2 we
n-parameter family of examine, albeit briefly, how differential equations arise

solitions from attempts to formulate, or describe, certain

Particular solution
Singular solution
General solution
Mathematical model

physical systems in terms of mathematics.



2 CHAPTER | INTRODUCTION TO DIFFERENTIAL EQUATIONS

/. / BASIC DEFINITIONS AND TERMINOLOGY

In calculus you learned that given a function y = f(x), the derivative

dy
y J'(x)
is itself a function of x and is found by some appropriate rule. For example,
if y = e*’, then

dy 2 dy

— = 2xe* — = 2xy.

x xe or = XYy 1)
The problem that we face in this course is not: given a function y = f(x), find
its derivative. Rather, our problem is: if we are given an equation such as
dy/dx = 2xy, somehow to find a function y = f(x) that satisfies the equation.
In a word, we wish to solve differential equations.

DEFINITION I.l1 Differential Equation

An equation containing the derivatives or differentials of one or more
dependent variables, with respect to one or more independent variables,
is said to be a differential equation (DE).

Differential equations are classified according to type, order, and linearity.

Classification by Type

If an equation contains only ordinary derivatives of one or more dependent
variables, with respect to a single independent variable, it is then said to be
an ordinary differential equation (ODE). For example,

dy
—~ —5y=1
dt Y

(y—x)dx +4xdy=0
du dv

dx dx
d’y dy
—=—2—+4+6y=0
dx? Tax Y
are ordinary differential equations. An equation involving the partial deriv-
atives of one or more dependent variables of two or more independent
variables is called a partial differential equation (PDE). For example,
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u ov

dy  ox

ou ou
XE_F})@—L‘

0*u  0*u u
ox*  or? ot

are partial differential equations.

Classification by Order

The order of the highest-order derivative in a differential equation is called
the order of the equation. For example,

second-order V Iirsl-ordcr”
dzy dy 3
—5+5[—) —4dy=e*
dx? dx ’

is a second-order ordinary differential equation. Since the differential equa-
tion (y — x) dx + 4x dy = 0 can be put into the form

4x — =X
X dx +y=Xx
by dividing by the differential dx, it is a first-order ordinary differential equa-
tion. The equation
o*u  0%u

. —_— =
ox* * ot?

0

is a fourth-order partial differential equation.

Although partial differential equations are very important, their study
demands a good foundation in the theory of ordinary differential equations.
Consequently, in the discussion that follows we shall confine our attention
to ordinary differential equations.

A general nth-order, ordinary differential equation is often represented

by the symbolism
dy d"y
Flx,y,—,...,— ] =0. 2
<x ¥ dx dx") @

The following is a special case of (2).

Classification as Linear or Nonlinear

A differential equation is said to be linear if it can be written in the form

2. (In*l‘,

dy
a,(x) el + a, (X)——=F + -+ a,(x) 7= + ap(x)y = g(x).
dx" dx" dx
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INTRODUCTION TO DIFFERENTIAL EQUATIONS

It should be observed that linear differential equations are characterized by
two properties:

(i) The dependent variable y and all its derivatives are of the first
degree; that is, the power of each term involving y is 1.

(ii) Each coefficient depends on only the independent variable x.
An equation that is not linear is said to be nonlinear.

The equations xdy+ydx=0
y'=2y'+y=0

d3y ,d%y dy .
dx—3—x dx—2+3xa+5y—e

and =

are linear first-, second-, and third-order ordinary differential equations,
respectively. On the other hand,

coeflicient depends | o
on y ‘ [ power not | \

JC d3
yy' —2y'=x and ﬁ+y2=0

are nonlinear second- and third-order ordinary differential equations,

respectively.

Solutions

As mentioned before, our goal in this course is to solve, or find solutions of,
differential equations.

DEFINITION 1.2  Solution of a Differential Equation

Any function f defined on some interval I, which when substituted into
a differential equation reduces the equation to an identity, is said to be
a solution of the equation on the interval.

In other words, a solution of an ordinary differential equation
Fx,,9,...,y™) =0

is a function f that possesses at least n derivatives and satisfies the equation;
that is,

F(x, f(x), f(x), ..., fP(x)) =0
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for every x in the interval I. The precise form of the interval I is purposely
left vague in Definition 1.2. Depending on the context of the discussion, [
could represent an open interval (a, b), a closed interval [a, b], an infinite
interval (0, o0), and so on.

EXAMPLE |

Verify that y = x*/16 is a solution of the nonlinear equation
dy 12
ax

on the interval (— o0, o0).

Solution One way of verifying that the given function is a solution is to
write the differential equation as dy/dx — xy'/? = 0 and then see, after sub-
stituting, whether the sum dy/dx — xy'/? is zero for every x in the interval.

Using
i_‘v’=4’(_3=£ and yl‘JZ: ﬁ l/zzﬁ‘
dx 16 4 16 4
we see that
B % YRR R
dx ’ 4 16 4 4
for every real number. [ ]

EXAMPLE 2

The function y = xe* is a solution of the linear equation
y'—=2y"+y=0

on (— a0, o0). To see this, we compute

y' =xe*+e* and y” = xe* + 2e".
Observe  y”" —2y' 4+ y = (xe* + 2¢*) — 2(xe* + %) + xe* =0

for every real number. ]

Notice that in Examples 1 and 2 the constant function y =0, for
— o0 < x < o0, also satisfies the given differential equation. A solution of a
differential equation that is identically zero on an interval I is often referred

to as a trivial solution. .
Not every differential equation that we write necessarily has a solution.



