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Preface

This is a book about physics, written for mathematicians. The readers we have
in mind can be roughly described as those who:

1.

2.

are mathematics graduate students with some knowledge of global
differential geometry

have had the equivalent of freshman physics, and find popular accounts
of astrophysics and cosmology interesting

. appreciate mathematical clarity, but are willing to accept physical motiva-

tions for the mathematics in place of mathematical ones

. are willing to spend time and effort mastering certain technical details,

such as those in Section 1.1.

Each book disappoints some readers. This one will disappoint:

. physicists who want to use this book as a first course on differential

geometry

mathematicians who think Lorentzian manifolds are wholly similar to
Riemannian ones, or that, given a sufficiently good mathematical back-
ground, the essentials of a subject like cosmology can be learned without
some hard work on boring details

those who believe vague philosophical arguments have more than historical
and heuristic significance, that general relativity should somehow be
“proved,” or that axiomatization of this subject is useful

those who want an encyclopedic treatment (the books by Hawking—Ellis [1],
Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [1] go further into
the subject than we do; see also the survey article, Sachs-Wu [1]).
mathematicians who want to learn quantum physics or unified field theory
(unfortunately, quantum physics texts all seem either to be for physicists,
or merely concerned with formal mathematics).
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Preface

While using this book in classes, we found that our canonical reader can
learn nonquantum physics rather quickly. Indeed, equipped with geometric
intuition and a facility with abstract arguments, he is in a position to deal
directly with the general, currently accepted models used in relativity without
being handicapped by the prejudices that inevitably come with years of
Newtonian training in the standard physics curriculum. However, this short-
cut does involve a price: one cannot really see the diversity of special cases
behind the deceptively simple foundation without spending more time than a
mathematics student normally can or should.

We have felt for a long time that a serious effort should be made by
physicists to communicate with mathematicians somewhat along the line of
this book. We started with the aim of keeping the physics honest, keeping the
mathematics honest, and keeping the logical distinction between the two
straight. But we were ill-prepared for the attendant trauma of such an under-
taking. In particular, the third point proved to be a veritable nightmare.
We managed to emerge from our many moments of doubt to complete this
book with the original plan intact, not the least because we were sustained
from time to time by the encouragement of some of our friends and colleagues,
particularly S. S. Chern and B. O’Neill. Nevertheless, we are pessimistic about
further attempts at explaining genuine physics to mathematicians using only
prerequisites familiar to them.

Many people believe that current physics and mathematics are, on balance,
contributing usefully to the survival of mankind in a state of dignity. We
disagree. But should humans survive, gazing at stars on a clear night will
remain one of the things that make existence nontrivial. We hope that at some
point this book will remind you of the first time you looked up.

Through the several drafts of this book as classroom notes, we were
fortunate to have the excellent secretarial assistance of Joy Kono, Nora Lee,
and Marnie McElhiney. A philosophical remark from Professor S. S. Chern
was responsible for an overhaul of our overall presentation. Many minor and
quite a few major improvements were due to suggestions by J. Arms, J. Beem,
K. Sklower and T. Langer. But for the warm hospitality of the DAMTP of
Cambridge University and the unswerving support of Kuniko Weltin under
rather trying circumstances, the final stage of the book-writing would have
been interminable and insufferable. Finally, support from the National
Science Foundation greatly facilitated the preparation of the manuscript.
To all of them, we wish to express our deep appreciation.
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Guidelines for the reader

1. All indented fine-print portions of the book are optional; they may be
skipped without loss of mathematical continuity. Some of these fine-
print paragraphs are proofs that we consider noninstructive. But the
majority of them contain comments that presuppose a knowledge of
physics (and on a few occasions, of mathematics) beyond the level of
our formal prerequisites. Nevertheless, we urge the reader to at least glance
through those dealing with physics; they may be read with the assurance
that each has been revised many times to minimize distortion of the physics.

2. The remainder of the text should be treated as straight mathematics, though
one should keep in mind the following peculiarity: There will be no all-
encompassing mathematical abstractions; instead, the emphasis through-
out is on simple definitions and propositions that have a multitude of
physical implications.

Physics attempts to describe certain aspects of nature mathematically.
Now, nature is not a mathematical object, much less a theorem. There is
no overriding mathematical structure that covers all of physics. Since the
subject matter of this book is physics, the reader will find here not a
coherent and profound mathematical study of general Lorentzian mani-
folds culminating in a Hauptsatz, but rather a disjointed collection of
propositions about a special class of four-dimensional Lorentzian mani-
folds. Mathematics plays a subordinate role; it is a tool rather than the
ultimate object of interest. For example, in Chapter 3 the emphasis is not
on the coordinate-free version of Stokes’ theorem, which is taken for
granted. Instead, this theorem is used to define and analyze many physical
concepts: the conservation of electric charge; the creation and annihilation
of matter; the hypothesis that magnetic monopoles don’t exist; relativistic
versions of Gauss’ law for electric flux, Faraday’s law of magnetic
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Guidelines for the reader

induction, and Maxwell’s displacement current hypothesis; the special
relativistic laws for conservation of energy, momentum, and angular
momentum ; and so on. These concepts in turn apply to a very rich variety
of known phenomena. Our aim in discussing the theorem is merely to
indicate how it can manage to say so much about the world so concisely.

In brief: economy will be central, mathematical generality will be
irrelevant.

The reader wishing to pursue the deeper mathematical theorems of
relativity should consult Hawking—Ellis [1].

3. The expository style of the book is strictly mathematical: all concepts are
explicitly defined and all assertions precisely proved. Now, in a serious
physics text basic physical quantities are almost never explicitly defined.
The reason is that the primary definitions are actually obtained by showing
photographs, by pointing out of the window, or by manipulating laboratory
equipment. The more mathematically explicit a definition, the less accurate
it tends to be in this primary sense. The reader is therefore forewarned that
on this one point we have intentionally distorted an essential feature of
physics in order to accommodate the mathematician’s intolerance of
theorems about mathematically undefined terms.

4. The exercises at the end of each section are, at least in principle, an integral
part of the text. We have been very conscientious in making sure that each
is workable within a reasonable amount of time.

5. Chapters 0 through 5 are meant to be read consecutively. The remaining
chapters are independent.



Guidelines for the reader

Chapter 0

Preliminaries

0.0 Review and notation
0.1 Physics background
0.2 Preview of relativity

Chapter 1|
Spacetimes

1.0 Review and notation
1.1 Causal character

1.2 Time orientability

1.3 Spacetimes

1.4 Examples of spacetimes

Chapter 2
Observers

2.0 Mathematical preliminaries

2.1 Observers and instantaneous observers
2.2 Gyroscope axes

2.3 Reference frames

Contents

Xi

17

17
20
24
27
29

36

36
41
50
52

vii



Contents

Chapter 3

Electromagnetism and matter 60
PART ONE: BASIC CONCEPTS

3.0 Review and notation 61
3.1 Particles 66
3.2 Particle flows 69
3.3 Stress-energy tensors 71
3.4 Electromagnetism 74
3.5 Matter and relativistic models 76
PART TWO: INTERACTIONS

3.6 Some mathematical methods 78
3.7 Maxwell’s equations 83
3.8 Particle dynamics 88
3.9 Matter equations: an example 95
3.10 Energy-momentum ‘conservation’ 96
3.11 Two initial value theorems 98
3.12 Appropriate matter equations 102
PART THREE: OTHER MATTER MODELS

3.13 Examples 103
3.14 Normal stress-energy tensors 104
3.15 Perfect fluids 107
Chapter 4

The Einstein field equation 111
4.0 Review and notation 111
4.1 The Einstein field equation 111
4.2 Ricci flat spacetimes 113
4.3 Gravitational attraction and the phenomenon of collapse 117
Chapter 5

Photons 124
5.0 Mathematical preliminaries 124
5.1 Photons 129
5.2 Light signals 133
5.3 Synchronizable reference frames 136
5.4 Frequency ratio 137
5.5 Photon distribution functions 140
5.6 Integration on lightcones 148
5.7 A photon gas 152
Chapter 6

Cosmology 159
6.0 Review, notation and mathematical preliminaries 160
6.1 Data 168

6.2 Cosmological models 176

viil



6.3
6.4
6.5
6.6
6.7

The Einstein—de Sitter model

Simple cosmological models

The early universe

Other models

Appendix: Luminosity distance in the Einstein—de Sitter model

Chapter 7
Further applications

7.0
7.1
7.2
7.3
7.4
7.5
7.6

Review and notation

Preview

Stationary spacetimes

The geometry of Schwarzschild spacetimes
The solar system

Black holes

Gravitational plane waves

Chapter 8
Optional exercises: relativity

8.1
8.2
8.3
8.4
8.5
8.6

Lorentzian algebra

Differential topology and geometry

Chronology and causality

Isometries and characterizations of gravitational fields
The Einstein field equation

Gases

Chapter 9
Optional exercises: Newtonian analogues

9.0
9.1
9.2
9.3

Review and notation
Maxwell’s equations
Particles
Gravity

Glossary of symbols
Bibliography

Index of basic notations

Index

Contents

184
196
203
208
210

216

216
217
218
220
228
237
242

250

250
254
257
259
262
264

266
266
267
269
271

273

274

2717

281

ix



Preliminaries

This chapter is intended mainly to clear the boards for action. A reader with
a solid background might try just skimming the chapter. Section 0.0 reviews
some of the differential geometry we shall need. Section 0.1 gives some
physics background. Section 0.2 gives an intuitive discussion of the transition
from Newtonian physics to relativity. A reader who has never studied relativ-
ity should work all the exercises for Section 0.2.

0.0 Review and notation

This section sets the notation. Definitions not explicitly stated and theorems
not explicitly proved are all discussed, for example, in the text by Bishop
and Goldberg [1], referred to as Bishop—Goldberg throughout. We follow the
Bishop—-Goldberg notation as closely as feasible.

0.0.1 Sets, maps, and topology

Suppose A4 and B are sets, and i: A — Bis a map, the image of a € 4 is written
either ia or i(a). For example, suppose C is a set and k: B— C is a map;
then (k o i)(a@) = (k o i)a = k(ia) = kia with k(ia) preferred. Suppose D is a
subset of A. We write D < 4 and write A — D = {a€ A | a¢ D}; i|p is the
restriction of i to D. Suppose E < B; we write i"*E < A for the complete
inverse image. Suppose A above is a topological space; then D~ and ¢D will
denote the closure and boundary, respectively, of D.

Z denotes the integers and R the reals. If £ < R is connected and open, we
sometimes write & = (a, b), with @ = —o0 and/or b = oo allowed. f: & — R
is called positive affine iff fu = cu + d, where ¢ > 0 and de R.



0 Preliminaries

0.0.2 Tensor algebra

If V is a vector space (always understood to be over R), ¥* denotes its dual.
The image of v € ¥ under w € V* is denoted by w(v) or wv. By a subspace of
¥V we mean a vector subspace. If V3,..., Vy are finite dimensional vector
spaces, then V; @ - - - @ Vy will denote their direct sum and V¥ @ - - - ® Vy
the vector space of multilinear maps ¥; X --- x Vy— R. The space of (r, s)
tensors over Vi isTy(V) =V Q- QViQ V¥ ®--- ® V¥, where there
are r unstarred and s starred factors. (r, s) is the zype of each tensor in
T’ (V,). Suppose S € T,(V,) and T € T,7(V,); then T ® S € T, }2(V,) denotes
the tensor product.

We are following the convention of Bishop—Goldberg in placing the
contravariant variables in front of all the covariant variables for each
tensor in T'(V:). This is aimed at facilitating any discussion concerning
tensors when no mention of indices is allowed.

0.0.3 Inner products

Let V be a finite dimensional vector space. A nondegenerate symmetric
bilinear form g on V is called an inner product on V (Bishop-Goldberg 2.21).
Let S = {W|W is a subspace of V and g|y is negative definite}. The index I
of g is the integer / = maxy.s (dimension W). Define the norm of ve V as
|v] = [|g(v, v)|]*/?; define v € V as a unit vector iff |v| = 1; definev,we V
as orthogonal iff g(v, w) = 0.

Let N = dim V, B = (ey, .. ., ey) be an ordered basis of V, and (¢, . . ., £¥)
be the dual basis of V'*. Bis called (“ ordered,” *“semi-"") orthonormal iff g =
NoleA@et — DN y_ 1416 ® &4, where the appropriate sum is zero if
I =0 or I = N. Equivalently, B is orthonormal iff: g(es, e,) = 1 for 1 <
A< N-1g(ese)=—1for N—IT+ 1< A< N, and g(e,, eg) = 0 for
A # B. A basis of pairwise orthogonal unit vectors can always be made an
orthonormal basis by appropriate reordering. If e € V' is a unit vector, there
exists an orthonormal basis that contains e.
We shall call the pair (V, g) a Lorentzian vector space and g a Lorentzian
inner product iff dim V > 2 and I = 1.

This is the case of main interest. The reader should not assume it is
essentially similar to the positive definite case. The differences are
central in physics, as the rest of this book shows. For example, suppose
g is an inner product on V. The subset {v e V| g(v, v) < 0} has two
connected components iff (¥, g) is Lorentzian. Locally, these com-
ponents correspond to the physical past and physical future. When the
algebraic structure of a Lorentzian (¥, g) is unwrapped from tangent
spaces into a manifold, a rich structure results (Penrose [1], Hawking
and Ellis [1]). See Optional exercises 8.3.



0.0 Review and notation

0.0.4 C* Manifolds and maps

Unless specifically denied, all manifolds, all objects on them, and all maps
from one manifold into another will be C®; however, we sometimes redun-
dantly write “a C* manifold,” and so on, for emphasis. A manifold M
introduced by a definition need not be connected, but will always be finite-
dimensional, real, Hausdorff, and paracompact. Throughout the remainder
of this book, M is a manifold. M, denotes the tangent space at x € M. The
tangent bundle TM is {(x, X) | xe M and X e M,} with its standard C*
manifold structure (Bishop—Goldberg 3A); the projection II: TM — M has
the rule II(x, X) = x. As in Bishop-Goldberg, M, will be identified with the
fibre T1~1x over x.

Let N be a manifold and ¢: N — M be a map. Then the map ¢,: TN —TM
between tangent bundles denotes the differential and ¢* denotes the pullback.
Thus (¢ o p)* = ¢* o p*. ¢ is an immersion iff Vn € N, ¢, restricted to N, is
one-one. An immersion ¢ is an imbedding iff ¢ N, with the topology induced by
that of M, is homeomorphic to N under ¢. Then ¢ is one-one and ¢N is
called an imbedded submanifold. Any open subset of M is an imbedded
submanifold. A diffeomorphism is an onto imbedding.

0.0.5 Tensor fields

Let T,"M be the bundle of (r, s) tensors over M, and P: Ty M — M be the
standard projection (Bishop—Goldberg 3A). An (r, s)-tensor field B on
% < M is a map B: % — T, M such that P o B = identity on %. Thus for
each xe %, Bxe Ty(M,). If % is a submanifold of M, then B being C*
makes sense, and this property will then be automatically assumed by our
convention.

We follow the standard definitions of the usual tensor formalism (Bishop—
Goldberg 2, 3, 4). For example, suppose f: M — R is a function on M; V
and W are vector fields on M; and ¢ and y are 1-forms on M. Then: (a) Ly
denotes the Lie derivative withrespectto V; (b) ¥f = df(V) = Lyfisafunction
on M; (c) [V, W]denotes the Lie bracketso that [V, W] = LyW;(d)¢ A y =
e @y — v ®@9); and () 2dp(V, W) = V(W) — Wo(V) — o([V, W)).
A g-form 7 on M is called closed iff dr = 0, exact iff there is a (g — 1)-form
# on M such that T = du. An exact g-form is closed.

We use the usual swindle for domains of definition. For example, let g be
a (0, 2) tensor field on M, and ¥V be a vector field on M; suppose We M,
for some x € M. Then g(¥, W) means gx(Vx, W)€ R and g(-, W) means
gx(-, W)e M¥. As another example, if U is a vector field defined on an
open submanifold A4~ of M, then g(U, V) means g|4(U, V|4), which is a
function on A"

An n-dimensional manifold M is called orientable iff there is a nowhere
zero n-form @ on M; any such o is called a volume element and determines
an orientation (Bishop-Goldberg 3C and p. 185). If M is an oriented mani-
fold and < M is open, we always assign the consistent orientation to %.
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0 Preliminaries

If, furthermore, 8% is a submanifold of M, then &% inherits an induced
orientation from M in the following manner: if x € % and {x', ..., x"} are
coordinate functions in an open set . containing x such that Z N/ =
{x! < 0} and dx* A --- A dx" is consistent with the orientation of M, then
dx? A --- A dx™ restricted to d% is consistent with the induced orientation
on 0%.

0.0.6 Curves

Let & = R be an interval, which may be infinite, and y: & — M a map. y will
always be understood to be C* in the following sense: there exists an open
set & = R containing & and a C*® map §: € — M such that §|¢ = v. Such a
C*® map y: € — M is called a curve in M. We denote the inclusion function
& — R by s, t, or u and the distinguished vector field on & by d/ds, and so on.
For example, du(d/du) = 1. For each u € &, y,u denotes the tangent vector at
yu; thus yuu = [y«(d/du)l(w) € M,,.

A curve y: & — M is called inextendible iff any other curve {: F — M
satisfying & < & and {|¢ = yisthecurvey: & — M itself. Acurve {: F — M
is called an (orientation-preserving) reparametrization of y: & — M if there
exists an onto map «: & — & with positive derivative such that y = { o c.
If « is positive affine, then ¢ is called a positive affine reparametrization of y.

If X is a vector field on M, the maximal integral curve of X through
x € M is the unique curve y:(a,b)—> M, —oo < a < b < oo, such that
(a) y0 = x; (b) ysu = X(yu) Yu € (a, b); and (c) vy is inextendible (Bishop—
Goldberg 3.4). The flow of X will be denoted by {u}. For example, if X is
complete, p,: M — M is obtained by moving each x € M s parameter units
along the maximal integral curve through x (Bishop—Goldberg 3.5).

0.0.7 Metrics and isometries

Let g be a symmetric (0, 2) tensor field on M. g is called a metric tensor with
index I on M iff gx is nondegenerate and index (gx) = IV x € M. Then
(M, g) is called a Riemannian manifold iff I = 0, semi- Riemannian otherwise.
We will call a semi-Riemannian manifold Lorentzian iff I = 1 and the
dimension of M is at least 2.

Let (M, g) and (N, h) be Riemannian or semi-Riemannian manifolds. A
map ¢: M — N is called an isometry iff ¢ is one-one, onto, and ¢*h = g.
Then ¢ is a diffeomorphism. (M, g) is then called isometric to (N, k) under ¢.
A map : M — N is defined as a local isometry iff J*h = g.

0.0.8 Geodesics

Throughout Section 0.0.8, (M, g) is a Riemannian or semi-Riemannian
manifold. The Levi-Civita connection D of (M, g) is that (“linear,” ““affine”)
connection on M characterized by: (a) symmetry, DyW — DyV = [V, W]
for all vector fields ¥, W on M; and (b) compatibility, Dyg = 0 for all such
V (Bishop—Goldberg 5.11). A curve y: & — M is a geodesic of (M, g) iff it is
a geodesic of D on M (Bishop—-Goldberg 5.12). We shall not count a constant
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0.0 Review and notation

curve, which has y& = x € M, as a geodesic. If y is a geodesic of (M, g),
there is an a € R such that g(ysu, ys«u) = aVu e &. y is called a maximal (or
inextendible) geodesic iff it is both a geodesic and an inextendible curve. Note
that if a geodesic y is a reparametrization of another geodesic £, then y is
necessarily a positive affine reparametrization of £. Let X be a nowhere zero
vector field. X is called a geodesic vector field iff DxX = 0. Thus X is geodesic
iff each of its integral curves is a geodesic.

The exponential map exp, at x € M maps a subset %, < M, into M as
follows. The zero vector 0 € M, is in %, and exp, 0 = x. A nonzero vector
Xe M, is in %, iff there is a geodesic y: [0, 1]— M such that y0 = x and
y«0 = X. For X e %,, X # 0, vy is unique and exp, X = yl. %, is open and
exp, is C®. For each x € M, there is an open neighborhood ¥, = %, of 0
such that exp, |y, is a difftcomorphism. (M, g) is complete iff %, = M, Vx e M.
(M, g) is complete iff every geodesic y: & — M can be extended to a geodesic
R — M (Bishop-Goldberg 5.13).

0.0.9 Bases and coordinate maps

Assume dimension M = n > 1. An ordered set {X3, ..., X,,} of vector fields
on M is called a basis of vector fields on M iff {X,x} is a basis of M, Vx e M.
A basis {@*} of 1-forms on M is defined similarly. Bases {X,} and {®*} are
called dual iff ®X, = 6,5VA, Be{l, ..., n}. Any basis uniquely determines
a dual basis. If M is oriented, we assign the consistent orientation to each
tangent space; unless explicitly denied, each basis used will then have the
consistent orientation. A basis {X,} on a Riemannian or semi-Riemannian
manifold (M, g), and its dual, are called orthonormal iff {X,x} is an ortho-
normal basis of M,Vx € M (cf. Exercise 0.0.15). On a given M there usually
does not exist a basis of vector fields or 1-forms. However, one can always
find such a basis in each coordinate neighborhood, and if g is also given, one
can even choose this basis to be orthonormal.

We define R¥ = R x ---x R, where there are N factors. u*: RY — R
denotes projection onto the Ath factor. Thus {du*} is a basis of 1-forms on
any open submanifold of R¥; the dual basis will be denoted by {0,}. If
% < M and x: % — RY is a coordinate map, x4 = u*|,4 o x denotes the
Ath coordinate function. The basis on % dual to {dx*} will be denoted also by
{04}

The unit (N — 1)-sphere (¥~ h,{) is V-1 = {xeR"| |x| = 1}, re-
garded as a C*® manifold, together with the standard induced metric & on
&N-1 and the standard volume element ¢ on .#¥-1. Thus if I: #¥-! — RY
is the inclusion, k = I*(CN_; du* ® du*). Note that &° is just the two
points {—1, 1} < R.

Exgercise 0.0.10

Let ¥V be a finite dimensional vector space. When V is regarded as a C® manifold,
it can be canonically identified with any of its tangent spaces. A basis-free method
is part (a) following. (a) Regard w € V* as a function &: ¥V — R. Show that for

5



0 Preliminaries

each v € V there is precisely one isomorphism ¢,: ¥, — V such that w(é,w) =
do(w)Vw e V, and w € V*, (b) Let g be an inner product on ¥, and §: V— R be
the function determined by g(v) = g(v, v). Show dg(w) = 2g(¢,w, v)Vw € ¥, and
ve V. (c) Let (V, g) be a Lorentzian vector space and define a (0, 2) tensor field
gon V by g(w, z) = g(¢,w, ¢$,2)Vv € V and w, z € V,. Show (V, g) is a Lorentzian
manifold.

Exercise 0.0.11

Let ¥ be an N-dimensional vector space, g be an inner product on ¥, and W < V
be a K-dimensional subspace. We define Wt = {ve V| g(v, w) = 0Vwe W}; if
w spans W, we shall also write wt = W+*. Show: (a) W' is an (N — K)-dimen-
sional subspace. (b) W+t = W. (c) V = W@ W' iff g|w is nondegenerate.

Exercise 0.0.12

If M is a manifold, show: (a) < TM open implies II% < Misopen;(b)?¥ < M
open implies II-*%" < TM is open.

Exercise 0.0.13

(a) Show that for Riemannian or semi-Riemannian manifolds, the relation ““is
isometric to”’ is an equivalence relation. (b) Let (M, g) and (M, ¢) be Riemannian
or semi-Riemannian manifolds. Show that ¢: M — M is a local isometry iff each
x € M has an open neighborhood % < M such that (%, g|#) is isometric to
(¢, §|o@) under $|a. (c) Let ¢: M — M be a local isometry as in (b) and let
y: & — M be a geodesic of (M, g). Show that § = ¢ o y is a geodesic of (M, g).
(d) Show that the set ¥M of isometries of a Riemannian or semi-Riemannian
manifold (M, g) onto itself forms a group.

Exercise 0.0.14

Let V be a finite dimensional vector space and ¢: ¥ — V'* a given isomorphism.
(a) Show that for r,s€Z, r > 0, s = 0, ¢ can be extended uniquely to an iso-
morphism (to be denoted by the same symbol) ¢: Ty(V) — T53:1(V) such that
P01 Q- BV, ' ® ) =01 Q- QV-y @) B 0! ® R o,
Voi,...,0,€ Vand o, ..., o® € V*. (b) Show by induction that there is a unique
isomorphism ¢,": T,(V) — T?. (V) for all nonnegative integers r, s such that
01 @ Qv @ @ Qo) =) @ ® d(1r) ® 0 B+ Q w'. (€)
Suppose p,q and r, s are nonnegative integers such that p + ¢ = r + s. For
AeTF(V)and Be Ty (V), define: A is ¢-equivalent to B (in symbols: 4 ~ B) iff
¢,(A) = ¢5(B). Show that ~ is an equivalence relation.

Exercise 0.0.15

Let V be a finite dimensional vector space and g be an inner product on V.
(a) Show that ¢: ¥ — V* defined by (¢v)w = g(v, w) Vo, w € V is an isomorphism.
We shall call this ¢ the metric isomorphism (induced by g). (b) Show that the map
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0.1 Physics background

g: V* x V* >R defined by §(w, o) = g(¢ ‘w, $~*w’), Yo, »" € V*, is an inner
product on V*. (c) Show that index g = index £. (In particular, § is Lorentzian
iff g is.) (d) Let {es,. .., ex} be an orthonormal basis of V with respect to g, and
let {¢, . . ., e} be its dual basis. Show that {¢%, . . ., &'} is orthonormal with respect
to g. (This justifies the terminology of *orthonormal basis of 1-forms” intro-
duced in Section 0.0.9.) (¢) Show that g, considered as a (2, 0) tensor, is ¢-
equivalent to g in the sense of Exercise 0.0.14(c). (f) Show that the element of V'
¢-equivalent to an w € V* is given by g(w, ).

Exercise 0.0.16

Let V be a finite dimensional vector space, §: ¥ — V be a given isomorphism,
and J*: V* — V* be the adjoint isomorphism. Show that for all nonnegative
integers r, s there is a unique extension of ¢ to an isomorphism ": T5'(V) —
T, (V) such that (" A)(w?, . . ., @", 01, ..., 0) = A@W*e?, ..., ¢*o’, vy, ..., pv)VA
eTs/(V), o, ..., w" € V* and vy,...,0;€ V.

0.1 Physics background

0.1.1 General relativity

No well-defined current physical theory claims to model all nature; each
intentionally neglects some effects. Roughly, general relativity is a model of
nature, especially of gravity, that neglects quantum effects. Its central assump-
tion is that space, time, and gravity are all aspects of a single entity, called
spacetime, which is modelled by a 4-dimensional Lorentzian manifold. It
analyzes spacetime, electromagnetism, matter, and their mutual influences.
It is used mainly in the study of large-scale phenomena: dense stars, the
universe, and so on.

Now in microphysics, gravity counts as a very minor effect. For example
the electric repulsion between two electrons is believed to be more than 10%°
times as large as their mutual gravitational attraction. But gravity is long
range and cumulative. In the realm of stars and galaxies it can dominate. For
example, the discovery of pulsars has now made it virtually certain that there
are some stars that manage to resist total collapse caused by their own gravity
only by a last-ditch effort, at a radius of perhaps 10 miles. For such stars,
and for the universe as a whole, general relativity is the best available theory.
It is also believed that there are stars for which gravity has triumphed com-
pletely, collapsing the star to a black hole. If so, general relativity will become
very exciting during the next decade.

Since we are giving a mathematical exposition of general relativity, the
basic postulates of this branch of physics are of necessity disguised as def-
initions. The key definitions are given in Sections 1.3.1, 3.3.1, 3.4.2, 3.5,
3.7.1, and 4.1.1. These definitions, not theorems, are central. Such definitions
carry the connotation ‘““nature is really somewhat like that,” so they require
more motivation than purely mathematical definitions. But we shall soft-
pedal motivations. Genuine motivations cannot be given piecemeal; they
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