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PREFACE

In the beginning of this century, when there existed no computers in
the world, Poincaré already imagined the existence of extremely complex
trajectories of motions through his research on three-body problems and
mentioned that “trajectories are surprisingly complex and I do not intend
to draw their pictures...”. It took 60 years until unpredictability of such
complex motions is recognized through research on weather [1] and mo-
tion of stars in the galaxy [2]. These two discoveries initiated the research
field of nonlinear dynamics and chaos in science, and they are referred
to as Lorenz chaos [1] and Henon-Heiles chaos [2]. Following these pio-
neering works, three universal routes to chaos, i.e., quasiperiodicity [3],
period-doubling cascade [4] and intermittency [5], were discovered by early
80’s. In accordance with these theoretical and mathematical progresses,
nonlinear dynamics and chaos have been demonstrated experimentally in
fields as diverse as chemistry, hydrodynamics, solid-state devices, biology,
celestial mechanics, optics and so on. Rapid advancements in this field of
nonlinear dynamics and chaos led to several discoveries of self-similarity
laws and quantitive characterization methodology of chaotic motions (e.g.,
strange attractors). More recently, the research towards coping with chaos
[6] utilizing the basic knowledge of the theory of chaos to achieve some
practical goal, such as prediction, control and communication, has been
demonstrated successfully.

Nonlinear dynamics and chaos in optics has a significant conceptual
meaning, because fundamental models of nonlinear optical systems, which
are derived from well-established Maxwell-Bloch equations, possess inher-
ent instability leading to chaos. These models provide promising prototypes
for investigating complex dynamical behaviors in strong connection with
experimental demonstrations. The research on nonlinear optical dynamics
forms the two poles together with the current topics in quantum optics such
as squeezing, cavity quantum electrodynamics, laser cooling, Bose-Eistein



condensation, quantum nondemolition measurement, so on and so forth,
which present us a variety of microscopic quantum mechanical world.

Research on chaos in optics was triggered by the dicovery of the sim-
ple mathematical correspondence existing between Lorenz equations and
Maxwell-Bloch laser equations with three variables by Haken in 1975 [7].
In early studies of solid-state lasers, period-doubling and chaotic spiking
were already observed in a deeply modulated Nd:YAG laser and chaotic
spiking oscillation was numerically observed in 1970 (8], although there
was no concept of chaos in the field of Quantum Electronics. The proposal
of Ikeda map in nonlinear passive optical resonators in 1979 [9], which ex-
hibits a Feigenbaum’s period-doubling bifurcation [4], observations of chaos
in widely used practical laser diodes [10] and much more have accelerated
the research of chaos in optics.

Generally speaking, the understanding of fundamental properties of
chaos in small degrees of freedom systems such as Lorenz chaos has reached
the period of maturity and interests are considered to shift towards dynam-
ics of nonlinear systems with large degrees of freedom. Such systems are
sometimes referred to as “complex systems” recently. The research along
this line would give birth to new concepts and methodology in the next
century in the process of systematic studies of complex systems which are
far from the traditional condensed-matter physics which focuses on individ-
ual materials, mesoscopic and microscopic systems. Indeed, through our
research of complex systems on the stage of quantum optics in recent years,
the following generic properties have been recognized:

1. Complex systems are self-organized to preserve orders resulting from
their nonlinearity, e.g., vanishing gain circulation rule, antiphase dynamics,
winner-takes-all dynamics and antiphase periodic states, universal power
spectra relation, nonstationary chaos, etc.

2. Complex systems self-create a variety of dynamic patterns, e.g., chaotic
itinerancy, self-formation of easy switching paths, majority-ruling switch-
ing, spot dancing, mode hopping, grouping chaos and cooperative synchro-
nization, etc.

3. Complex systems aquire various cooperative functions which are quali-
tatively different from individual elements, e.g., domino dynamics, spatial
chaos and felexible memory, factorial dynamic pattern memory, controlled
switching-path formation and factorial pattern generation, parametric “lin-
ear” response, etc.

This Monograph entitled “Nonlinear Dynamics in Optical Complex
Systems,” summarizes systematically our work on nonlinear dynamics and
chaos in optics which has been done in these past 10 years at NTT Basic
Research Laboratories, Université Libre de Bruxelles and Tokai University,
focussing on nonlinear dynamics and cooperative functions in collective
optical systems with large degrees of freedom. For this purpose, detailed



derivations of traditional equations are spared to a certain extent and only
key messages are included. The author would be more than happy if the
readers could be stimulated by some generic nature in complex systems
mentioned above.

The author is indebted to Profs. T. Kamiya and M. Ohtsu for providing
him an opportunity of publishing this Monograph. He also thanks Prof.
K. Ikeda of Ritsumeikan University, Prof. P. Mandel of Université Libre
de Bruxelles (Belgium) and Prof. J.-L. Chern of National Cheng Kung
University (Taiwan). Most of this book is written on the basis of articles
co-authored by these collaborators. In particular, Sections 1.2 and 1.3 have
been completed referring to discussions with Prof. Ikeda.
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Chapter 1

PROLOGUE TO NONLINEAR DYNAMICS IN
OPTICAL COMPLEX SYSTEMS

In this chapter, fundamental model equations which describe the light-
matter interaction are summarized. Then, several key optical systems,
which initiated the research on nonlinear dynamics and chaos in optical
systems, and their essential properties are reviewed as the basis for “optical
complex systems” described in the following chapters.

Before discussing a variety of optical instabilities, it should be pointed
out that there exist three characteristic frequencies which appear when we
consider dynamics resulting from the light-matter interaction. It is inter-
esting to note that instabilities associated with these frequencies appear
under appropriate conditions.

These three frequencies are: (1) the relaxation oscillation frequency,
(2) the longitudinal mode spacing frequency and (3) the Rabi precession
frequency. Relaxation oscillations refer to oscillations resulting from the in-
terplay between the photon number and the population inversion in lasers,
such as solid-state lasers, CO; laser, and semiconductor lasers, in which
the transverse relaxation rate is extremely large as compared with the lon-
gitudinal relaxation rate, i.e., 71 > <. The longitudinal cavity mode
spacing frequency corresponds to the frequency difference between longitu-
dinal modes which resonate in the cavity. This frequency plays an impor-
tant role for instabilities in the passive nonlinear resonator and corresponds
to the fundamental frequencies in multimode oscillations as well. Finally,
Rabi precession refers to coherent oscillations of material fields (i.e., po-
larizations) which take place under the applied electric field in far-infrared
lasers.

A schematic diagram of time scales of optical instabilities under typical
oscillation conditions is depicted in Fig. 1.1, showing the relation between
characteristic frequencies and three relaxation rates, x, v, and -, which
characterize the optical resonator and the nonlinear medium. Here, x is
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Figure 1.1: Schematic diagram of laser instabilities. Shown is the output modulation
(peak intensity over average intensity) versus frequency of cavity loss modulation.

the damping rate of the optical cavity.

In section 1.1, fundamental semiclassical equations which describe the
light-matter interaction are described. Sections 1.2 and 1.3 describe laser
instabilities and chaos associated with Rabi precession and the effect of
inhomogeneous broadening on laser dynamics. Section 1.4 discusses in-
stabilities and chaos related to relaxation oscillations. Finally, instabilities
and chaos in passive nonlinear resonators are reviewed in section 1.5.

1.1 Fundamental Semiclassical Equations

We consider atoms interacting with an “intense” electromagnetic field
for which the quantization is not necessary. Starting from the Schrédinger
equation, the following dynamical equations describing the light-matter
interaction in two-level systems are derived in terms of density matrix ele-
ments p;;:

dpi2/dt = (iwo — v1)p12 — i(p12/h) EAp, (1.1)
dAp/dt = i(4mpia/h)E(p12 — pia) + 7 (Apo — Ap), (1.2)

where hwg/2m = Wo—W, (W, is the energy level, wy is the atomic resonance
frequency), p12 is the electric dipole moment, Ap = pa2 — p11 and Apy =
(0) (0)

P22 — P11 -
From Maxwell equations, on the other hand, wave equations for the

electromagnetic field F(r,t) and material polarization P(r,t) in the cavity

ZE e“nt | cc., (1.3)

P(r, t)—ZP et 4 6., (1.4)
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are given by
dEn/dt + [kn + 1(Qm — wn)| B = i(wn/2€0) P, (1.5)

assuming rotating-wave and slowly-varying envelope amplitude (SVEA) ap-
proximations. Here, k, is the damping rate, Q, is the cavity resonance
frequency, w, is the oscillation frequency of the n-th mode and ¢q is the
dielectric constant.

The macroscopic material polarization and population inversion are
expressed by P = Npjap12 + c.c. and AN = NAp is the population in-
version density, where N is the density of atoms. Assume a single-mode
oscillation, then the following Maxwell-Bloch laser equations for the com-
plex field amplitude E, the complex polarization amplitude p oscillating at
the frequency w and Ap are derived from Egs. (1.1), (1.2) and (1.5)

dE/dt = —kE — (Npw/2€0)p, (1.6)
dp/dt = [i(w — wo) — 7115 — (2mu/h)EAp, (1.7)
dAp/dt = v (Apo — Ap) + (mp/h)(Ef* + E*p), (1.8)

where subscripts are omitted.
In the stationary state, from the relation P = eyxF, the complex
electric susceptibility x is derived from the Bloch equations (1.6)—(1.8) as

2N Apo|p|?[(wo — w) — iv.]

eohl(wo —w)? + 3 + (2mpE/R)*(yL /)] (1.9)

x=x —ix"=

Here, the real part expresses the dispersion (refractive index) profile and the
imaginary part expresses the light amplification (absorption) profile. x’ and
x"" obey Kramers-Kronig relationship, where the term (2ruE/h)*(y. /)

is a light-intensity dependent x(®) nonlinearity of the refractive index and
gain (absorption).

1.2 Homogeneously-Broadened Single-Mode Laser

1.2.1 Stationary states and linear stability analysis

Let us consider the case that the oscillation frequency w is tuned to
the atomic transition frequency wy, i.e., w = Q = wy. Here, we introduce
a new variable F' = —(27r,u/h)E' and notations are changed as p — p and
Ap — w. In this case, Eqs. (1.6)—(1.8) are written as

dF/dt = —kF + s%p, (1.10)

dp/dt = —v1p+ Fuw, (1.11)
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dw/dt = v (wo — w) + Fp, (1.12)

where s2 = Nw|u|?/2¢0.

We abbreviate the set of 3 variables (F, p, w) of the Maxwell-Bloch
equations (1.10)—(1.12) with vector x and let Egs. (1.10)—(1.12) be written
formally by

dx/dt = F(x) (1.13)

F(x) defines the flow vector at the point x=(F', p, w) in the 3-dimensional
phase space whose components are the r.h.s. of Egs. (1.10)—(1.12). Station-
ary solutions, i.e., fixed point x; is the point which satisfies dxs/dt = 0,
ie.,

F(xs) =0

The problem is the stability of x;. The infinitesimal deviation éx =
(6F, 6p, 6w) around x,s obeys the following linearized equation of motion

déx/dt = (OF(x,)/0x)6x (1.14)

OF (x;)/0x represent a 3 x 3 Jacobian matrix with (i,j) components given by
OF;(xs)/0x;. The stability analysis of the model equations (1.10)—(1.12),
is quite simple, and is left as an exercise for the readers. Only the final
results are shown below:
(1) If the linear gain ap = s%wp /. is smaller than the threshold value
ai,ll) = K, only the trivial non-lasing solution,
O : (Fs, ps,ws) = (0,0, wp) (1.15)

exists as a stable fixed point solution.
(2) If ap exceeds the first thresheld ag,ll), O becomes unstable, and the

lasing solution

« K « Y1k
L* 2 (Fay parwa) = (E4[170(S0 = 1) gy [mra (5 - 1), 250) (116)

appeas as a new stable fixed points. At ap = af,ll) , the stability exponents
at O is
A1=0, X=-vy A3=—(k+7L), (1.17)
and A\; becomes positive at ag > ag,ll).
(3) If ap is increased further and under the condition

K>’Y||+’)’J_, (1.18)
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even the fixed points L* become unstable when aq exceeds the “seccond”

threshold. The ratio of ag}zl) to ag}ll) is given by

(2), (1) "oy By 2 b B
ay [ay’ = + +3 - —-1). 1.19
G B V{Cr L SV (BT
and the stability exponents around L* at oy = agi) are given by,

A1 =—(k+9 +7L), A2z = j:i\/Q'i(f‘é + K1)k =y —vL)/vL) (1.20)

For ag > afi), the real part of Ay 3 becomes positive, and a precession at

frequency Im(Xz23) is excited. Consequently, the bifurcation phenomenon
which occurs at ag = agi) is a Hopf bifurcation.
The above descriptions are too much arithmetic. We therefore present
a physical picture of the instability above the second threshold since the
indicated phenomenon contains a typical aspect of laser instabilities.
For the sake of simplicity, let us consider the special case of 7 = v =
v, and introduce a complex variable Z representing the material field

Z = s%(p — iw). (1.21)
The linearized equation (1.14) is then written as
déF/dt = —ké6F 4 (6Z +627)/2 (1.22a)

d6Z/dt = —6Z + iZ,6F +iF,62 (1.22b)

Let us now consider the limit of large linear gain ag = s?wg/y.. The
third term on the right side of equation (1.22b) becomes dominant. This
means that the deviation 6Z of the material field starts to oscillate as
87 ~ 6Ze'Fst where 67 is the slowly varying part of §Z. This oscillation
is the Rabi precession of the material field. The precession components of
the material field, via the Maxwell equation (1.22a), induce the oscillation
of electric field at the same frequency. Let 6F ~ 6Fefst then §F ~
6Z/2(iFs + k). In short,

6Z
OF ~v ————. 1.23
2(iFs + K) (1.23)

Note that the ¢ F term resulting from the Rabi precession is included in the
denominator. In the limit of ag > k,i.e., Fy — oo, this effect is significant

and 6F' possesses only the out-of-phase component of §Z. In other words,
induced electric fields are dispersive.



