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Preface

This book is designed to supplement existing textbooks on fracture
mechanics with material related to the analytical solution of partial dif-
ferential equations that pertain to its theory. It concentrates mainly on the
near crack-tip region, on which most current research is being focused.
Further, it contains a collection of problems that are drawn from recent
research in the fields of elastoplastic and environmentally assisted fracture
mechanics. In the course of solving these problems, several different
solution techniques are demonstrated.

The Introduction presents a systematic development of fracture me-
chanics theory. It begins with the equations of continuum mechanics and
follows with descriptions of general elastic and plastic theory. Subsequent
to these general topics, linear elastic fracture mechanics, plastic strip
models, and mode III elastoplastic solutions are presented. Following
these, failure criteria, slip line theory, and finite element solutions of the
mode I problem are discussed. The Introduction provides the necessary
background for understanding the subjects covered in the remainder of the
book.

In Chapter 1, an initial value problem for the plastic stress function is
solved and corresponding displacements of a mode I elastoplastic problem
under plane stress loading conditions are obtained. The prescribed
elastic—plastic boundary is found by substituting the elastic small-scale-
yielding stresses into the Tresca yield condition. If the properties of the
governing Monge—Ampere equation (a second-order and nonlinear partial
differential equation) are exploited, then it is possible to reduce the
problem to a nonlinear, first-order partial differential equation. The plastic
stress function is subsequently obtained through the use of differential
geometry theory by finding an integral surface that circumscribes the
known elastic (Airy) stress function. Unlike in the analogous mode III
problem (Hult and McClintock, [HM 56]), whose solution is also pre-
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xii Preface

sented, a disequilibrated stress discontinuity is found in the trailing portion
of the plastic zone of the mode I problem. This discontinuity indicates that
an elastic unloading and a redistibution of stress must occur if equilibrium
is to be established. Despite the appearance of the stress discontinuity, this
solution might still approximate the plastic stress field ahead of the crack
tip, where unloading is likely to be minimal. Currently, there are no other
analytical elastoplastic solutions available for mode I problems involving
finite-dimensional plastic zones.

In Chapter 2, an elastoplastic solution is obtained for a mode III
problem that is related to a transition in plastic zone shape through
changes in the eccentricity of the elliptical plastic region. One can recover
from this solution, as special cases, the Cherepanov plastic strip solution
and the Hult and McClintock small-scale-yielding solution. Also discussed
in this chapter, in connection with the transition model, are an equivalent
crack length, energy dissipation rate, and fracture assessment diagram.
This model has important implications regarding failure curves on the
fracture assessment diagram.

Chapter 3 investigates two different mathematical models that are
related to environmentally assisted crack growth. The first model is an
incremental approach to crack growth, whereas the second model assumes
a continuous growth process. Both series and asymptotic expansions are
employed in the solution of the equations of the first model for the onset
of hydrogen-assisted cracking. Numerical solutions for the secondary and
tertiary phases of environmental crack propagation are then examined. In
connection with the second model, a modified Stefan problem is proposed
and solved for a certain class of transport-controlled stress corrosion
cracking problems. Of particular note is the elegant mathematical solution
of the moving boundary value problem that is associated with this problem.
This solution resolves the seemingly paradoxical situation that external
transport of corrodant can lead to uniform rather than decreasing crack
growth rates. The decreasing crack growth rates that are predicted by the
conventional Stefan problem are not observed experimentally. This ex-
plains why this classic moving boundary value problem for diffusion-con-
trolled phenomena has not been applied previously to fracture problems.

In Chapter 4, a Westergaard formulation of the three principal modes
of fracture is provided. Exact linear elastic solutions are presented for
infinite plates subject to remote tractions. A quantitative comparison
between the exact linear elastic solutions and the small-scale-yielding
approximations for stresses, displacements, and elastic—plastic boundaries
is then given. Chapter 4 is designed to provide insight into the assumptions
and limitations of small-scale yielding.



Acknowledgments

The author acknowledges the support of the National Science Founda-
tion (U.S.A.) under Grant MEA-8404065 for the research reported in
Chapter 3 on environmental cracking phenomena. Additional support has
been provided by the Center for Mechanics of Materials and Instabilities
at the Michigan Technological University and the Office of Research and
Graduate Studies at the Ohio State University.

Further thanks are given to Pergamon Press Ltd., Headington Hill Hall,
Oxford OX3 OBW, UK, for their kind permission to freely adapt text and
figures reprinted from Refs. [Ung 90a, Ung 89a, Ung 92a, LU 88, Ung 89b,
Ung 90c, UGA 83] in Sections 1.1, 2.1, 2.2, 3.1, 3.2, 3.3, 4.1, and 4.2.
Gratitude is also expressed to Kluwer Academic Publishers, Spuiboulevard
50, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, for their permis-
sion to incorporate text and figures reprinted from Refs. [Ung 90b, Ung 91,
Ung 92b, Ung 93] in Sections 1.2, 2.3, 2.4, and 4.3.

Section 3.1 of this text contains material from an article coauthored
with S. L. Lee [LU 88]. Section 3.1 also contains supplementary computa-
tions and figures produced jointly with Y. Seo [SU 88] where indicated.
The figures and analyses in Chapter 4 (less Section 4.3) were published
originally with W. W. Gerberich and E. C. Aifantis as [UGA 83] or by
Aifantis and Gerberich in [AG 78] where noted.

Thanks are also given to J. D. McBrayer for his assistance in the
production of the color plates.

Special thanks are extended to my former doctoral thesis adviser, E. C.
Aifantis, for guidance and for inspiring my love of research.

Lastly, thanks are given to my wife Carolyn for the love and support she
has given to me over the years.

xiii



Contents

Preface xi
Acknowledgments xiii

Introduction

I.1 Equations of Continuum Mechanics 1
Equilibrium 1
Strain—Displacement 4
Change of Volume 4
Compatibility of Strains 4
1.2 Equations of Elasticity 5
1.3 Equations of Plasticity 6
Strain Hardening 9
Material Stability 11
Incremental Strain—Stress Relationships 12
Flow Theory versus Deformation Theory 16
1.4 Plane Problems of Elasticity Theory 16
Cartesian Coordinates 17
Polar Coordinates 19
Kolosov Equations 21
Boundary Conditions 23
I.5 Linear Elastic Fracture Mechanics 23
Mode I 25
Mode IT 28
Mode III 29
1.6 Strip Models of Crack Tip Plasticity 34
Mode I Small-Scale Yielding Strip Model 39
Mode III Small-Scale Yielding Strip Model 41

vii



viii Contents

1.7 Exact Elastoplastic Solutions for Mode III 45
Isotropic Hardening 52
1.8 Plane Strain Problems Involving Plastic Theory 63
Plane Strain 63
Prandtl-Hill Solution 75
Failure Criteria 82
Power Law Hardening Materials under Plane Strain 90
1.9 Plane Stress Problems Involving Plastic Material 94
Tresca Yield Condition 95
Mises Yield Condition 99
Power Law Hardening Materials under Plane Stress 105
1.10 Numerical Solutions of the Mode I Elastoplastic Problem 105
Numerical Solutions 108
I.11 Miscellaneous Mathematical Topics 114
Complete Solutions 114
Monge—-Ampere Family of Partial Differential Equations 118
Order Symbols 120

1

On the Continuance of an Analytical Solution across
the Elastic-Plastic Boundary of a Mode I Fracture
Mechanics Problem

1.1 Elastoplastic Stress Analyses for Modes I and III 122
Mode III 122
Mode I 127
Parabolic—Hyperbolic Plastic Boundary 136
Uniqueness and Continuity of Stress 137
Stress Discontinuities 142
1.2 Developable Surfaces 143
1.3 Strain Rates for Plane Stress under the Tresca Yield Condition 147
1.4 Mode I Displacements 150
1.5 Speculations Concerning an Analytical Mode I Elastoplastic Solution
163
Color Plates 168

2

Plastic Zone Transitions

2.1 A Finite-Width Dugdale Zone Model for Mode III 172
Elastic Solution 172
Plastic Solution 178



Contents ix

Recovery of Previous Solutions 183

Crack Tip Opening Displacement 185

Comments 186
2.2 An Energy-Dissipation Analysis for the Transition Model 186
2.3 Effective Crack Length for the Transition Model 193
2.4 Fracture Assessment Diagrams 197

3

Environmental Cracking

3.1 Hydrogen-Assisted Cracking 208

Kinetic Processes 210

Models 215

Growth of the Cohesive Zone 216

Crack Propagation 220

Overview of Some Previous Models of Environmental Cracking 231
3.2 Analysis for Impending Hydrogen-Assisted Crack Propagation 233

Crack Tip Opening Displacement 237

Function ¢(c,a, a) 240

Asymptotic Expansion 242

Discussion 245
3.3 A Modified Stefan Problem Related to Stress Corrosion

Cracking 246

Analysis 250

Small and Large Values of v/V, 256

Discussion 258

4
Small-Scale Yielding versus Exact Linear
Elastic Solutions

4.1 The Fundamental Modes of Fracture 261

4.2 Elastic—Plastic Loci as Predicted by Linear Elastic Fracture
Mechanics 274

4.3 Inverse Cassinian Oval Coordinates for Mode III 280

References 285
Index 293



Introduction

The purpose of this introduction is to acquaint the reader with some of
the fundamental equations and theorems of mechanics that govern elastic
and plastic material behavior. Some fundamental problems pertaining to
fracture mechanics, along with their associated partial differential equa-
tions and solution techniques, will also be discussed.

I.1 EQUATIONS OF CONTINUUM MECHANICS

The term continuum in this section’s title refers to a body that is
continuous at an infinitesimal scale as opposed to a discretized model, i.e.,
one that is represented by a collection of individual masses with space
between them, as in an atomic lattice. Other terms that one commonly
encounters in mechanics literature are homogeneous and isotropic. A
homogeneous body is one whose material properties do not change
abruptly, as in an aggregate such as concrete, which is composed of cement
and gravel. An isotropic body is one whose material properties do not vary
with direction, as in wood, whose properties change with the orientation of
the grain. We will restrict our discussion to isotropic and homogeneous
bodies.

Equilibrium

All of the problems discussed in this text will neglect inertia (i.e., high
acceleration) and the effects of body forces (e.g., weight is negligible in
comparison to applied forces on the body). Thus the body will be in a state
of equilibrium such that the following system of equations are satisfied for



2 Introduction

an isotropic, homogeneous body when expressed in a rectangular Carte-
sian coordinate system (x, y, z):

Oex T Tyxy T Tox, 2 = 0 (I.1-1)
U)’vy + Txy,x + sz,z = 0 (11-2)
Ore ¥ Tppp + T,y =0 (1.1-3)

where o; represents a normal stress in the i direction (i =x,y, 2), 7;
represents a shear stress in the ij plane (j = x,y, z), and the variables
following a comma designate partial differentiation with respect to those
variables; e.g.,
J0;
0, ; = —, etc. (I.1-4)
’ ai
(Note, as in (I1-4), that the commonly used Einstein summation conven-
tion for repeated index (j = i) on an arbitrary second-order tensor A4;; will
not be employed in this text; i.e., 4; #A4,, +A,, +A4,,.)
Equilibrium also requires that shear stresses be symmetrical in the

absence of a body couple (true in most applications, with the exception of
strong magnetic fields); i.e.,

Tij = Tji- (I1.1-5)

This assumption reduces the number of stresses to be determined in
(1.1-1)-(1.1-3) from nine to six.

The actions of individual stresses on a cube of material are shown
pictorially in Fig. I.1-1.

On the surface of a body, the stresses produce a force per unit area
called traction ¢; (i =x,y, z). The components of the traction may be
expressed in matrix form as follows:

Ly O, Ty Tz|[n,

t = o

y By O BllkRy (I1.1-6)
t, Tez Ty g, n,

where n; (i =x,y,z) are the components of an outward normal unit
vector of the surface. The directions of the vectors relative to the inclined
surface of a tetrahedron are shown in Fig. I.1-2.

The axes of the Cartesian coordinate system can always be rotated at
any point of a body such that all shear stresses disappear from the surface
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FIGURE 1.1-1
Positive stresses acting on various planes of a cube of material in equilibrium.

of the stress cube. The magnitude of stress at this given point is then
characterized by three normal stresses (o, o,, o3), which are referred to
as the principal stresses.

The magnitude of the maximum shear stress |7,,,| that a body sustains
at a point is related to the principal stresses by the formula

|Tmaxl = maxlo;, - %I/z, (11-7)

FIGURE I.1-2
Normal and traction vectors on the inclined surface of a tetrahedron.
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where max|o, — o represents the greatest difference between the princi-
pal stresses o, (@ =1,2,3) and 0, (B =1,2,3).

Strain-Displacement
Small geometric changes of a deforming body are assumed in this text.

Consequently, the familiar linearized strain—displacement relationships
hold true:

€=U,y €=y, =i, (1.1-8)
Viy = L&gy= Uy 5+l (I1.1-9)
Yer = 26, = U, ,tu,, (1.1-10)
Yy, =2¢&,=u, ,+ Bypo (I.1-11)

where u; is the displacement in the i direction, ¢; is the normal strain in
the i direction, v;; is the engineering shear strain in the i plane, and ¢; is
the shear strain in the ij plane.

Shear strains are symmetrical with respect to the coordinates, i.e.,

Yij = Vi € = € i=x,y,z,j=x,y,z,i #j, (1.1-12)

as can be seen from their relationships with displacement (I.1-9)—(1.1-11).

Analogous to shear stresses, it is always possible to rotate the orienta-
tion of the Cartesian axes at a given point in the body so that all shear
strains (I.1-12) vanish. The normal strains that remain at this point in the
body after this rotation of axes are called the principal strains ¢, €,, and
€5, where the subscripts 1, 2,3 denote the new Cartesian axes.

Change of Volume
The change of volume of a material, AV per unit volume of material V,

is referred to as the dilatation 6. The dilatation is related to the normal
strains as follows:

0=AV/V =€ +€ +€=¢€+¢€+e¢;. (1.1-13)

Compatibility of Strains

In general, six equations of strain compatibility must be satisfied in
order to obtain a single-valued displacement field. Mathematically, this
situation occurs because specifying strain without restriction overdeter-
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mines the possible displacement field. These compatibility relationships
are

€ry: = Eyxz T €y T €z (I.1-14)
€z = € yz T €2 xy T Erpyy (1.1-15)
€xy = €y: T €z e T &y iz (1.1-16)
Yey,xy = €xyy T € xx (I.1-17)
Yezoxz = € xx T & 22 (I.1-18)
Vyzyz = €2z T € yy- (1.1-19)

1.2 EQUATIONS OF ELASTICITY

The following stress—strain relationships hold true for linear elasticity:
o, = (E/[(1 + v)A = 20D - v)e + v(e, +€)] (12D
o, = {E/[(1 + )A = 20)]}[(1 = v)e, + v(e, + €)]  (12-2)
o, = (E/[(0 + )1 = 20)D[(1 = e, + v(e, + )], (1.2-3)

where E is Young’s modulus and » is Poisson’s ratio (both assumed
constant).

Alternatively, we may write strain in terms of stress as

€ = (1/E)[a'x - v(o, + 0'2)] (1.2-4)
¢, = (1/E)| o, = v(a, + 0,)] (1.2-5)
e, = (1/E)[ 0, = v(o, + 0})]. (1.2-6)

There are only two independent parameters of linear elasticity for an
isotropic material. One alternative parameter, called the shear modulus G,
is related to Young’s modulus and Poisson’s ratio as follows:

G =E/[2(1 + »)]. (1.2-7)

This parameter is useful in describing the elastic shear stress and shear
strain relationships compactly:

7ii = GYijs i=Xx,Y,2,]=X,y,2,0 #]. (1.2-8)

For an incompressible material Poisson’s ratio v = 1/2.
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1.3 EQUATIONS OF PLASTICITY

The two most commonly applied criteria of plastic yield for the model-
ing of metals are the Mises yield condition and the Tresca yield condition.
The Mises yield condition predicts that plastic behavior is initiated in a
material when its maximum distortion energy reaches a critical value (see
[Men 68]). On the other hand, the Tresca yield condition predicts yield
when the maximum shear stress reaches a critical value.

In Cartesian coordinates, the Mises yield condition for incipient plastic
flow assumes the form

(0, 0)" + (0, - 0)" + (0, - 0,)’
F 6(Tx2y + szz + Tyzz) = 20-02’ (1'3-1)

where o is the yield stress in simple tension. The relationship between o
and the yield stress in pure shear k for the Mises criterion is

Mises: o, =3k - k = 0.5770,. (1.3-2)

This can be deduced from (I1.3-1) by setting all of the stresses equal to zero
—save one shear stress, which is given the symbol k.

The Mises yield condition can also be expressed in terms of the three
principal stresses (o, o,, o3) by an equivalent form (4.2-1). One advan-
tage of using (4.2-1) instead of (1.3-2) is that a surface representing (4.2-1)
can be visualized in conventional three-dimensional space, with the princi-
pal stresses serving as Cartesian coordinates whose base vectors point in
the direction of the principal stresses (the Haigh—Westergaard space),
whereas (I.3-2) can be visualized only in a generalized sense—as a surface
in six-dimensional hyperspace (o, , 0,, 0,, 7, 7, 7,.,)-

In the Haigh—Westergaard principal stress space (o, 0, 03), the Mises
yield criterion appears as a cylindrical surface of radius R = (2/3)"/%, by
virtue of a geometric interpretation of Eq. (4.2-1). However, this surface
appears as a circle in Fig. 1.3-1, as the line of sight is along the central axis;
i.e., the generators of the cylinder are perpendicular to the plane of the
paper.

In contrast to the Mises yield condition, the Tresca yield condition can
be deduced from (I.1-7) as

max|o, — o31/2 = k, a=1,2,3,8=1,2,3, (1.3-3)

where k is again defined as the yield stress in pure shear, as it was for the
Mises yield condition. Using (I.3-3), by setting all but one of the principal



