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Preface

This book can serve as an introduction to students interested in learning
the techniques used in developing mathematical models of physical
phenomenon; or it can furnish the background information to the
experienced professional desiring to broaden his/her knowledge of
polymers.

The senior author presented material in this book to students
interested in learning the fundamental mathematics underlying many
areas of polymer physics and in lectures to audiences with varying
backgrounds in polymer physics.

The material in this book should prove helpful to readers who have
knowledge of introductory mathematics, chemistry and physics.

The text emphasizes the derivation of many equations used in
Polymer Physics. The assumptions used in modeling, and in making the
mathematical apparatus solvable in closed form, are presented in detail.
Too many times, the basic equations are presented in final form in
journal articles and books from either lack of space or the assumption
that the derivation is widely disseminated and does not require repetition.

The fundamentals of any discipline have to be constantly tested
against new findings. This book presents the assumptions and
simplifications of the fundamentals of many areas of Polymer Physics so
that the testing process can be expedited.

The authors have discussed this material with many colleagues and in
return received many pertinent suggestions for improvement. These
include Philip Wilson, Mohan Srinivasaro, Hiromichi Kawai, Shigeharu
Onogi, Garth Wilkes, Takeji Hashimoto and Marion Rhodes, James J.
Burke and many others who attended courses or collaborated with
Professor Stein in research projects.

The improvements belong to our colleagues. The residual factual
errors, typos and other problems belong to the authors.

For supplementary material, corrections and communications with us,
please visit http://web.mac.com/rsstein1/iWeb
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Chapter 1

INTRODUCTION

1.1. Background

The concept of long chain molecules in which the atoms forming the
backbone are bonded by strong primary valence forces, usually covalent
in nature, is the foundation of polymer science. Until relatively recently,
chemistry, which is the study of molecules in all their ramifications,
emphasized the study of small molecules. These could be readily purified
to yield materials with constant composition and well characterized
properties. Naturally occurring polymers, such as natural rubber or
cellulose, did not fit into this framework of small well-characterized
molecules [1]. Many investigators considered that the naturally occurring
polymers constituted a fourth state of matter, essentially colloidal in
nature, because these materials did not seem to obey the laws derived for
gases, liquids, or solids as these laws were then understood. The
assertion that, since rubber and cellulose were the products of living
organisms, a vital principle, not amenable to physico-chemical laws, was
involved reinforced this viewpoint.

Based on chemical evidence, Staudinger [2], in the early 1920s, was
the first investigator to strongly advocate long, linear chain structures for
polystyrene, polyoxymethylene, and natural rubber. During this time
span, x-ray diffraction developed as a tool for determining the structure
of molecules. The diffraction photographs of natural rubber and cellulose
taken by Meyer and Mark were interpreted as showing that these
polymers did have long chain structures [3]. Carothers furnished a key
argument, based on purely chemical reasoning, in favor of the view that
polymers, in the main, were composed of long linear chains. By the late
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1920s, organic chemists had accumulated a large store of knowledge on
the reaction conditions, products, yields and structures of many small
monomeric molecules involved in organic chemical reactions. For
example, the reaction between an amine and an organic acid was known
to produce an amide with the elimination of a molecule of water:

R,NH, + HOOCR, — R,NHCOR, + H,0

(R, R;being typically methyl, ethyl or other aliphatic radicals).
Carothers reasoned that, if both molecules were difunctional (i.e., two
amine groups on R; and two organic acid groups on R,), sites would be
available for further reactions:

H,NR,NH, + HOOCR ,COOH — H,NR ,NHCOR ,COOH + H,0

The reaction would continue until the starting materials (difunctional
amines and organic acids) were exhausted. Thus, a long chain polymer
structure could be synthesized using a well known and well understood
organic chemical reaction. In a classic series of investigations [4],
Carothers and a small group of co-workers were able to demonstrate that
this and similar chemical reactions produced long linear chain molecules.
As a point of interest, Carothers produced nylon 66 by using CgHj2
(hexamethylene) for R; and C4Hg for R,. Carothers [4] coined the term
condensation polymers for the long chain molecules produced by these
reactions because the elimination of small molecules such as water
condensed the length of the polymer repeat unit compared to that of the
starting molecules. Conversely, Carothers called polymers such as
polystyrene and polyoxymethylene addition polymers because the
monomer units add through the opening of double bonds. Thus, these
latter polymers added monomers during formation with no elimination of
small molecules.

Many of these linear chain polymers have the advantage for
characterization that they are soluble in organic solvents. This has aided
greatly, as will be shown later, in the analysis of chain structures and
reaction mechanisms and the determination of molecular weight. Most
linear polymers, both condensation and addition, also reversibly soften
and flow on heating and conversely harden and become rigid on cooling.
These materials are sometimes called thermoplastics because they flow
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at sufficiently high temperatures. This thermal characteristic is used to
advantage in reprocessing these polymers. The thermoplastics did not
become commercially available, with a few exceptions such as cellulose
acetate, polystyrene, poly(methyl methacrylate), until after World War II.
A second class of polymeric materials (thermosets) had been introduced
earlier (ca. 1910) starting with the phenol-formaldehyde polymers
developed by Leo Baekeland [5]. Thermosets are composed of non-linear
polymer chains (based on a functionality of 3 or more) that combine
chemically to form three dimensional network polymers. They are
soluble and fusible only up through the intermediate stages of
polymerization. Once polymerization is complete, the thermosets form
hard infusible insoluble structures that soften on heating over a
temperature range. The average temperature for the range is called the
glass temperature. On heating to higher temperatures, thermosets
decompose because of their network structure. The lack of solubility and
general intractability rendered thermosets difficult to study from a
fundamental standpoint.

Elastomers or rubbers represent an intermediate stage in terms of
functionality between thermoplastics and thermosets. Elastomeric
behavior in polymers originates from a special type of chain structure.
This point is discussed more fully in Chapter 7. Elastomers to be useful
articles of commerce require a controlled number of crosslinks (chemical
bonds between neighboring chains). Natural rubber (and its progeny, the
synthetic rubbers, spawned during and after World War II) elongates
readily to several times its original length on the application of a small
force and readily retracts with release of the applied force. But, unless it
is crosslinked, rubber will tend to flow on being held at high elongations
and gradually lose its ability to retract. Goodyear [6] found in the 1830s
that, upon adding sulfur to natural rubber latex and heating, the
coagulated latex changed from a flowable gum to a retractive elastic
material. He also observed that the hardness of natural rubber ranged
from a soft crepe rubber (essentially thermoplastic) on small sulfur
additions to hard infusible rubber (or thermoset) with large sulfur
additions.
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Figure 1.1b. Branched Polyethylene.

1.2. Linear Chain Molecules

1.2.1. Structure

Polyethylene, the prototype or model chain for linear addition polymers,
is composed of ethylene monomer units linked by covalent bonds to
form long chains (Figure 1.1a.) But, this linear chain was only produced
in the mid 50’s by the Ziegler—Natta catalysts. Before this, the Fawcett
process that required high pressure and temperature produced a
polyethylene chain that contained many small side chains or branches
attached by covalent bonds to the main chain (Figure 1.1b). Nuclear



