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PREFACE

It should be possible to write a textbook on mechanics of materials that meets
the needs of undergraduate students, who are learning about the subject for the
first time, and graduate engineers who require a dependable reference. The goal
of the authors has been to satisfy both of these requirements. We have tried to
present the theories and methods in a teachable and easy-to-learn manner, with
ample discussions and illustrative examples, so that undergraduate students can
readily master the fundamentals. However, the text often goes beyond the
elementary stages, so that both more advanced subjects and more specialized
subjects are included. Thus, the graduate engineer, whether he is engaged in
design or research, or whether he is extending his studies on his own initiative,
will find that there is much additional material of interest to him.

A glance through the table of contents will show the topics covered in this
book. These topics iuclude the analysis of structural members subjected to
 axial load, torsion, and bending, as well as all of the basic concepts of mechanics
of materials, such as strain energy, stress and strain transformations, inelastic
behaviour, and so forth. Special topics of interest to engineers include thermal. °
effects, nonprismatic beams, large deflections of beams, bending of unsymmetri-
cal beams, the shear centre, and many others. Finally, the last chapter gives an
introduction to structural analysis and energy methods, including the unit-load
method, reciprocal theorems, flexibility and stiffness methods, strain energy
theorems, potential energy theorems, Rayleigh-Ritz method, and complementary
energy theorems. This chapter can serve the reader as a foundation for the,
study of modern structural theory.

There is clearly more material in this book than would be covered in'a typical
undergraduate course, hence each teacher has the opportunity to select the
material that he feels is the most fundamental and important. Teachers will
also appreciate the hundreds of new problems in the book (over 600 problems
total) that are available for homework assignments or for use in class discussions.

The reader will soon discover the extensive references that are collected at the
back of the book. These references give the historical development and the
original sources of the subject matter. Furthermore, because there is much
interest in the pioneers who developed the subject, we have also included bio-
graphical notes in many places in the references.

This book is ‘““‘new” in the sense that it is a completely new presentation of
mechanics of materials, covering subject matter of current interest. *But in an-
other sense it is “ old,” because it has evolved from the well-known two-volume
series entitled Strength of Materials by Professor Timoshenko. Strength of
Materials was last revised in 1955 and 1956, when a third edition was published.
The second edition was published in 1940 and 1941, and the first edition was



PREFACE

publishéd in 1930. Moreover, the first edition was actually based upon several
earlier, versions published in Russia and extending as far back as 1908. A listing
of those early Russian editions can be found in Timoshenko’s bibliography,
which appears-in his autobiography, “‘As I Remember > (D. Van Nostrand Co.,
Inc., 1968). The authors are hopeful that this book, accompanied by a later
volume titled Advanced Mechanics of Materials, will have brought this long
line of textbooks up to date. -

To acknowledge all of the people who have conmbuted to this book in some
manner would clearly be impossible, but a major debt is owed to Professor D.
H. Young, who read the entire manuscript and offered many valuable sugges-
tions. We are indebted also to another colleague, Professor William Weaver,
Jr., for advice on the chapter on structural analysis and energy methods. A
different type of debt is owed to the many students who studied from earlier
versions of this book and from whom the authors have learned how to write a
better textbook ! And, of course, no-book could be written without the help of
devoted secretaries—Mrs. Mark F. Nelson, Jeanne Mackenzie, Mrs. Richard E.
Platt, and Susan Bennett. To these persons and many others, the authors are
pleased to express their gratitude.

Stanford, California - 8. P. Timoshenko
July, 1971 * . J. M. Gere

PREFACE TO S.I. EDITION

In the conversion of this textbook into SI units the endeavour has been to
use the gecommended metric units as far as possible. - The most appropriate
unit for stress is still under debate amongst engineers and the main alternatives
are Newtons per square millimetre (N/mm?2), mega-Newtons per square metre
(MN/m?), the Pascal (one mega-Pascal = 1 MN/m? = 1 N/mm?) andjthe bar
(0.1 N/mm?). The adoption of ‘N/mm? as the basic unit for stress in the
recently published British Standard Code of Practice 110 for the structural use
of concrete and in the BCSA/CONSTRADO Handbook on Structural Steelwork
has been taken as a precedent and followed in this book. For length, metres
and millimetres have been used, except where areas, second moments of area and
section moduli have been quoted from the Handbook on Structural Steelwork in
centimetre units. s :

All examples have been recast to. maintain ease of numerical working, so that
dimensions do not correspond precisely with those used in the original American
edition of the book. . _

In the conversion of this book it its hoped that nothing has been done to
obscure or detract from the clarity of the original text.

Dundee, Scotland " A. R. Cusens
Margh, 1973 : R. A. Estafiero

Vi
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* LIST OF SYMBOLS :

area, *action (force or couple), constant

dimensions; distances, constants

constant of integration, centroid

distance from neutral axis to outer surface of a beam
displacement, kinematic unknown

diameter, dimension, distance

modulus of elasticity, elliptit integral of the second kind
reduced modulus of elasticity -

eccentricity, dimension, distance

force, elliptic integral of the first kind, flexibility coefficient
shear flow, shape factor for plastic bending

form factor for shear

modulus of elasticity in shear

acceleration of gravity

distance, force,.reaction, horsepower

height, dimension

moment of inertia (or second moment) of a plane area
moments of inertia with respect to x, y, and z'axes
principal moments of inertia

product of inertia of a plane area with respect to the xand y axes
polar moment of inertia, torsion constant

bulk modulus of elasticity, effective length factor for a column

symbol for VP/EI

length, span

bending moment; reactive couple

plastic moment for a beam

yield moment for a beam

axial force

factor of safety, number, ratio, mteger’ revoluuons per minute
origin of coordinates

concentrated force, load, axial force

critical load for a column

ultimate load

working load or allowable load

yield load

pressure :
concentrated force, first moment (or static moment) of a plane area

Xi



xii  LIST-OF SYMBOLS

intensity of distributed load (load per unit distance)
ultimate load
yield load
reaction, radius
radius, distance, radius of gyration (r = VI/4) .
force, section modulus for a beam, shear centre, stiffness coeﬂicxent
distance, length along a curved line
temperature, twisting couple or torque
ultimate torque
yield torque
thickness
strain energy
strain energy per unit volume
complementary energy
complementary energy per unit volume
. shear force,-volume ;
deflection, velocity
v”, etc. dv/dx, d *v/dx?, etc.
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W weight, work
w* complementary work
X statical redundant
g R rectangular coordinates, distances
X, 9, 2 coordinates of centroid
V4 plastic modulus for a beam
a angle, coefficient of thermal expansion, ratio
os shear coefficient
B angle :
¥ shear strain, weight per unit volume
Yxy» Vve» Y2x Shear strains in the xy, yz, and zx planes
Ve shear strain for inclined axes
5, A deflection, displacement, elongation
€€ normal strain
€x, €y, €: normal strains in the x, y, and z directions
€1, €2, €3 principal normal strains
€y yield strain
€o ~ normal strain for inclined axes
0 angle, angle of twist per unit length, angle of rotation of beam axis
6, angle to a principal plane or a principal axis
"8, angle to a plane of maximum shear stress

curvature (x = 1/p)

yield curvature’

distance

radius, radius of curvature, radial distance in polar coordinates
Poisson’s ratio

normal stress
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LIST OF SYMBOLS _ xiii

Ox, Oy, 0% normal stresses on planes perpendicular to the x, y, and z axes

as . normal stress on inclined plane

04, 02, O3 principal stresses

Ocr critical stress for a column (o = Pc./A)

o, residual stress

g3 ultimate stress

T working stress or allowable stress

o, " yield stress .

T, T shear stress )

Txy, Tyz, Tz Shear stresses on planes perpendicular to the x, y, and z axes and
" parallel to the y, z, and x axes Y ;
shear stress on inclined plane
ultimate stress in shear _
working stress or allowable stress in shear
yield stress in shear
angle, angle of twist
nondimensional factor
.angular velocity
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CHAPTER 1

TENSION, COMPRESSION,
AND SHEAR

1.1 INTRODUCTION

Mechanics of materials is a branch of applied mechanics that deals with the
behaviour of solid bodies subjected to varioustypes of loading. Itisa field of
study that is known by a variety of names, including “strength of materials”
and “mechanics of deformable bodies.” The solid bodies considered in this
book include axially-loaded bars, shafts, beams, and columns, as well as struc-
tures that are assemblies of these components. Usually the objective of our
analysis will be the determination of the stresses, strains, and ‘deformations
produced by the loads; if these quantities can be found for all values of load up
to the failure load, then we will have obtained a complete picture of the mechan-
ical behaviour of the body. :

Theoretical analyses and experimental results have equally important roles
'in the study of mechanics of materials. On many occasions we will make
logical derivations to obtain formulas and equations for predicting mechanical
behaviour, but at the same time we must recognize that these formulas cannot be
used in a realistic way unless certain properties of the material are known.
These properties are available to us only after suitable experiments have been
made in the laberatory. Also, many problems of importance in engineering
cannot be handled efficiently by, theoretical means, and experimental measure-
ments become a practical necessity. The historical development of mechanics
of - materials is a fascinating blend of both theory and experiment, with
experiments pointing the way to useful results in some instances and with
theory doing so in others. Such famous men as Leonardo da Vinci (1452-1519)
and Galileo Galilei (1564-1642) made experiments to determine the strength of
wires, bars, and beams, although they did not develop any adequate theories
(by today’s standards) to explain their test results. By contrast, the famous
mathematician Leonhard Euler (1707-1783) developed the mathematical theory
of columns and calculated the critical load of a column in 1744, long before any
experimental evidence existed to show the significance of his results. Thus,
Euler’s theoretical results remained unused for many years, although today they
form the basis of column theory.*

The importance of combining theoretical derivations with experimentally
determined properties of materials will be evident as we proceed with our study

* The history of mechanics of materials, beginriing with da Vinci and Galileg, is given in
Refs. 1-1, 1-2, and 1-3. : . ‘
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of the subject. In this chapter we will begin by discussing some fundamental
concepts, such as stress and strain, and then we will investigate the behaviour of
simple. structural elements subjected to tension, compression, and shear.

1.2 STRESS AND STRAIN .

The concepts of stress and strain can be illustrated in an elementary way by
considering the extension of a prismatic bar (see Fig. 1-1a). A prismatic bar is
one that has constant cross section throughout its length and a straight axis. In
this illustration the bar is assumed to be loaded at its ends by axial forces P that
produce a uniform stretching, or tension, of the bar. By making an artificial cut
(section mm) through the bar at right angles to its axis, we can isolate part of the
bar as a free body (Fig. 1-1b). At the right-hand end the tensile force P is
applied, and at the other end there are forces representing the action of the
removed portion of the bar upon the part that remains. These forces will be
-continuously distributed over the cross section, analogous to the continuous

=—>r

s

~ 33

P<—-{.
-

o HP

(b)

Fig. 1-1. Prismatic bar in tension.

distribution of hydrostatic pressure over a submerged suriace. The intensity of
force, that is, the force per unit area, is called the stress and is’commonly denoted
by the Greek letter . Assuming that the stress has a uniform distribution over
the cross section (see Fig. 1-1b), we can readily see that its resultant is equal to
the intensity o times the cross-sectional area A of the bar. Furthermore, from
the equilibrium of the body shown in Fig. 1-1b, we can also see that this resultant
must be equal in magnitude and opposite in direction to the force P. Hence, we
obtain

as the equation for the uniform stress in a prismatic bar. This equation shows
that stress has units of force divided by area—for example, Newtons per square
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millimetre (N/mm?)* or pounds per square inch (psi).  When the bar is being
stretched by the forces P, as shown in the figure, the resulting stress is a fensile
stress; if the forces are reversed in direction, causing the bar to be compressed,
they are called compressive stresses.

A necessary condition for Eq. (1-1) to be valid is that the stress o must be
uniform over the cross section of the bar. This condition will be realized if the
. axial force P acts through the centroid of the cross section, as can be demon-
" strated by statics (see Prob. 1.2-1). When the load P does not act at the centroid,

bending of the bar will result, and a more complicated analysis is necessary (see

Art. 5.10). Throughout this book, however, it is assumed that all axial forces

are applied at the centroid of the cross section unless specnﬁca]ly stated to the

contrary. Also, unless stated otherwise, it is generally assumed that the weight

of the object itself is-neglected, as was done when discussing the bar in Fig. 1-1.

The total elengation of a bar carrying an axial force will be denoted by the

* Greek letter & (see Fig. 1-1a), and the elongation per unit length, or strain, is
then determined by the equation ’

Rl

b 3 -(1-2)

where L is the total length of the bar. Note that the strain ¢ is a nondimensional

- quantity. It can be obtained accurately from Eq. (1-2) as long as the strain is

uniform throughout the length of the bar. If the bar is in tension, the strain is a

tensile strain, representing an elongation or stretching of the material; if the bar

is in compression, the strain is a compressive strain, which means that adjacent

cross sections. of the bar. moye closer to one another.

1.3 THE TENSILE TEST -

The relationship between stress and strain in a particular material is determined
by means of a tensile test. A specimen of the material, usually in the form of a
round bar, is placed in a testing machine and subjected to tension.  The force
on the bar and the elongation of the bar are measured as the load is increased.
The stress in the bar is found by dividing the force by the cross-sectional area, and
the strain is found by dividing the elongation by the length along which the
elongatlon occurs. In this manner a complete stress-strain dmgram can be
obtained for the material. -

The typical shape of the stress-strain diagram for structural steel is shown in
Fig. 1-2a, where the axial strains are plotted on the horizontal axis and the
corresponding stresses are given by the ordinates to the curve OABCDE. From
O to A the stress and strain are directly proportional to one another and the
diagram is linear. Beyond point A4 the linear relationship between stress and
strain no longer exists; hence the stress at A is called the proportional limit. For =

* Alternative units (identically equivalent to N/mm?) are MN/m?2 and MPascal.
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low-carbon (structural) steels, this limit is usualily between 200 N/mm? and 250
N/mm?, but for high-strength steels it may be much greater. With an increase in
loading, the strain increases more rapidly than the stress, until at point B a con-
siderable elongation begins to occur with no appreciable increase in the tensile
force. This p/henomenon is known as yielding of the material, and the stress
at point B is called the yield point or yield stress. 1In the region BC the material
is said to have become plastic 2nd the bar may actually elongate plastically by

o o
' ~,
D E "
d /—\
A c

(a) (b)

Fig. 1-2. Typical stress-strain curve for
structural steel: (a) pictorial diagram (not
to scale); (b) diagram to scale.

an amount which is 10 or 15 times the elongation which occurs up to the propor-
tional limit. At point C*the material begins to strain harden and to offer addi-
tional resistance to increase in load. Thus, with further elongation the stress

increases, and it reaches its maximum value, or ultimate stress, at point D.
~ Beyond this point fur her stretching of the bar is accompanied by a reduction
in the load, and fracture bf the specimen finally occurs at point E on' the
diagram.

During elongation of the bar a lateral contraction occurs, resulting in a
decrease in the cross-sectional area of the bar. This phenomenon has no effect
on the stress-strain diagram up to about point C, but beyond that point the
decrease in area will have a noticeable effect upon the calculated value of stress.
A pronounced necking of the bar occurs (see Fig. 1-3), and if the actual

Py }—»P

- Fig. 1-3. Necking of a bar in tension.

cross-sectional area at the narrow part of the neck is used in calculating o, it will
" be found that the true stress-strain curve follows the dashed line CE’. Whereas
the total load the bar can carry does indeed diminish after the ultimate stress is



