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1 INTRODUCTION

Bayesian econometrics has expanded enormously in recent years. This expansion has
occurred not only in econometric theory, but also in empirical work. Many applied fields
have seen a large increase in the use of Bayesian econometric methods. Researchers
interested in learning the basics of Bayesian econometrics have available a wide range
of textbooks, from the classic textbook of Zellner (1971) through the influential con-
tributions of Poirier (1995) and Bauwens, Lubrano, and Richard (1999) to the recent
burgeoning of graduate textbooks such as Geweke (2005), Koop (2003), Koop, Poirier,
and Tobias (2007), Lancaster (2004), and Rossi et al. (2005). However, there is no single
source for researchers and policymakers wanting to learn about Bayesian methods in
specialized fields, or for graduate students seeking to make the final step from textbook
learning to the research frontier. The purpose of this Handbook is to fill this gap.

Although each chapter in this Handbook deals with a set of issues distinct to its topic,
there are some unifying themes that run through many of the chapters. The first of these
is the use of computationally intensive posterior simulation algorithms. In Bayesian
econometrics, the simulation revolution has been so overwhelming that almost all of
the chapters in this book have a substantial computation component. The develop-
ment of more powerful computers and more sophisticated simulation algorithms have
gone hand in hand, leading to a virtuous cycle where Bayesian econometric meth-
ods and model development have become complementary. Indeed, with some models
(e.g. dynamic stochastic general equilibrium (DSGE) models), Bayesian methods have
become predominant. In the case of DSGE models, there are several factors which
account for this Bayesian predominance. But one of these factors is the availability of
powerful simulation tools which allow the researcher to uncover features of the high-
dimensional, irregular posterior distributions that arise.
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A second theme that runs through many of the chapters is heterogeneity. In cross-
sectional and panel data sets this is manifest at the individual level. That is, even after
controlling for observable characteristics, individuals may still differ to such an extent
that use of standard regression-based methods assuming slope coefficients which are
common across individuals is inappropriate. In marketing, different groups of con-
sumers may respond to a change in the price of a product differently. In labor eco-
nomics, different individuals may have different returns to schooling. In time series
econometrics, heterogeneity takes the form of time-varying parameters. For instance, in
macroeconomics, parameters may follow stochastic processes permitting their gradual
evolution, or they may follow Markov switching models permitting different values in
expansions and contractions. Although the precise treatment of heterogeneity differs
between macroeconomic time series applications and microeconomic panel data appli-
cations, the general issues which arise are the same. The researcher must seek to model
this heterogeneity in some manner and this is most conveniently done in a Bayesian
framework using hierarchical priors. For instance, in Chapter 8 (“Bayesian Applica-
tions in Marketing”), heterogeneity relates to the issue of clustering of related groups
of consumers using a mixture of normals model. In macroeconomic applications, the
mixtures of normals and the Markov switching components both can be interpreted as
hierarchical priors, suggesting a Bayesian treatment.

A third, related, theme of much modern Bayesian econometrics arises from problems
caused by proliferation of parameters. Many modern models either directly have high-
dimensional parameter spaces (e.g. vector autoregressive (VAR) models and the non-
linear extensions of VARs used in macroeconomics and finance) or depend on latent
variables of high dimension (e.g. the states in state space models are unobserved latent
variables and are often of high dimension). In such models, hierarchical priors address
concerns about over-fitting in the context of high-dimensional parameter spaces. That
is, if the research simply says a parameter, 6;, varies with i, then the parameter space
proliferates regardless of whether i indexes individuals in a panel data exercise or
indexes time in a time series exercise. By assuming 6; for i = 1, .., N to be drawn from a
common distribution (i.e. by using a hierarchical prior), we retain a model that allows
for individual heterogeneity, but in a much more parsimonious manner. The precise
choice of a hierarchical prior (allowing for an adequate degree of heterogeneity, but not
so much as to make the model over-parameterized) is crucial and several chapters in
this Handbook describe the various choices that are coming to be seen as empirically
sensible. For the Bayesian, the treatment of such issues is simple and straightforward.
The recent advances in Bayesian computation typically mean that Markov chain Monte
Carlo (MCMC) methods allow the researcher to integrate out latent variables or nui-
sance parameters.

Another theme of the Handbook will be immediately apparent to anyone who stud-
ied Bayesian econometrics 25 years ago. Before the availability of abundant computer
power, Bayesian econometrics was mainly limited to models, such as the normal linear
regression model with natural conjugate prior, for which analytical results are available.
Now, the range and level of complication of models have greatly increased. Of particular
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note is the development of flexible parametric and nonparametric Bayesian approaches.
For instance, in many decision problems in economics, the importance of allowing for
asymmetric risk functions has led to econometric models where the use of symmetric
distributions such as the normal is inappropriate. In the normal linear regression model,
Bayesians are no longer wedded to either normality or linearity, but have developed
methods that can relax either or both of these assumptions. Many of the chapters in this
Handbook include flexible or nonparametric models appropriate to the specific chapter
topic. In addition, we think this topic of such importance that we have devoted an entire
chapter to it.

Finally, econometrics is distinguished from statistics by its combination of economic
theory with statistics. From the analysis of DSGE models through marketing models
of consumer choice, we often have models which are strongly infused with economic
theory and decision-theoretic issues are important. Bayesian methods have enjoyed an
increasing popularity in such cases. Such models are often parameterized in terms of
structural parameters with an economic interpretation and attendant prior information.
Many of the chapters in this Handbook are characterized by their careful linking of sta-
tistical with economic theory and their close attention to prior elicitation. Furthermore,
features of interest to policymakers facing decision problems can be directly calculated
using output from an MCMC algorithm.

This book is organized in three parts addressing principles, methods, and applica-
tions, respectively. In the following sections of this Introduction, we offer brief sum-
maries of the contributions of this Handbook in each of these areas.

2 PRINCIPLES

This section contains two chapters on principles of Bayesian analysis especially relevant
in econometrics.

Chapter 1 on “Bayesian Aspects of Treatment Choice” by Gary Chamberlain offers
a Bayesian approach to decision theory, focusing on the case of an individual deciding
between treatments. An important focus of this chapter is the role of information that is
available about other individuals through a propensity score. The chapter shows how the
propensity score does not appear in the likelihood function, but does appear in the prior.
The chapter discusses various priors in this context. It takes up the extension to the case
of treatment selection based on unobservables (including a case where an instrumental
variable is available) and provides a comparison with the related literature.

Dale Poirier, in Chapter 2 on “Exchangeability, Representation Theorems, and Subjec-
tivity”, turns to the foundations of statistical inference rooted in the representation the-
orems of Bruno de Finetti. He refers to his chapter as a “subjectivist primer” and shows
how different assumptions about the joint distribution of the observable data lead to
different parametric models defined by prior and likelihood function. Thus, parametric
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models arise as an implication of the assumptions the researcher makes about observ-
ables. Parameters are merely convenient mathematical fictions which serve, in his
words, as “lubricants for fruitful communication and thinking” The chapter presents
many extensions and offers a clear exposition of the subjectivist attitude which underlies
much of Bayesian econometrics.

3 METHODS

The second part of the Handbook contains three chapters about Bayesian methods that
are important in their own right and are used in most of the remaining chapters.

Chapter 3 on “Time Series State Space Models” by Paolo Giordani, Michael Pitt,
and Robert Kohn provides a description of the time series methods that underpin
much of modern macroeconomics and finance. In these fields, state space methods are
commonly used. For instance, various regime switching and change-point models (e.g.
Markov switching or time-varying parameter VARs) are state space models, as is the
popular dynamic factor model. Stochastic volatility is a state space model. Various
treatments of outliers, breaks, and jumps in time series involve state space models.
This chapter discusses a variety of posterior simulation algorithms and illustrates their
use in a range of models such as those just listed. It is worth noting the extensive
discussion of particle filtering methods in this chapter. The particle filter is a very
useful tool in the Bayesian analysis of the kinds of complicated nonlinear state space
models which are increasingly being used in macroeconomics and finance. The
very practical discussion of the advantages and disadvantages of each algorithm
provided in this chapter will be of use to the reader wanting to use these methods in
empirical work.

The burgeoning use by Bayesians of models far more flexible than the simple para-
metric models of the past was noted above. Chapter 4 on “Flexible and Nonparamet-
ric Modelling” by Jim Griffin, Fernando Quintana, and Mark Steel serves to take the
reader to the research frontier in the use of these models. The chapter divides into
two parts. The first part considers flexible parametric models while the latter is purely
nonparametric. For the Bayesian, nonparametric models are those where the dimension
of the parameter space is unfixed and unbounded. Within the class of flexible parametric
models, the authors discuss ways of making distributions more flexible than the normal,
first in terms of fat tails and then in terms of skewness. A brief discussion of finite
mixture models opens the way to the nonparametric part of the chapter. The most
popular Bayesian nonparametric approach involves the use of Dirichlet processes and
results in an infinite mixture representation for the data. The chapter discusses Dirich-
let processes in detail, describes various posterior simulation algorithms for Bayesian
nonparametric models, and illustrates their usefulness in empirical illustrations. The
chapter also contains a discussion of methods for flexibly estimating the conditional
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mean in a regression model, including splines, Gaussian processes, and smoothing
priors. The concluding part of the chapter ties the previous parts together in a discussion
of fully nonparametric (or flexible parametric) regression modelling. That is, it considers
the case where both the conditional mean of the regression is given a nonparametric
(or flexible parametric) treatment and the p.d.f. (probability density function) of the
regression error is estimated nonparametrically (or with a flexible parametric finite
mixture model). In short, this chapter provides a detailed discussion of both theory and
computation for the reader interested in flexible treatment of distributions or functional
forms or both.

Chapter 5 is an “Introduction to Simulation and MCMC Methods” by Siddhartha
Chib. As discussed above, posterior simulation methods have revolutionized Bayesian
econometrics. This chapter begins with an intuitive exposition of the ideas and concepts
which underlie popular algorithms such as importance sampling and the Metropolis-
Hastings algorithm, before moving on to multi-block algorithms (e.g. the Gibbs sam-
pler). These algorithms are used in almost every other chapter of this book, so the
reader unfamiliar with posterior simulation should first read Chapter 5. This chapter
also discusses state-of-the-art algorithms that are not yet in the textbooks. For instance,
in Bayesian analysis of DSGE models, the posterior is potentially of a complicated form
and no natural blocking of the parameters for an MCMC algorithm suggests itself. An
empirical illustration using a DSGE model shows the usefulness of tailored randomized
block Metropolis-Hastings algorithms. Finally, the chapter offers extensive discussion
of marginal likelihood calculation using posterior simulator output.

4 APPLICATIONS

The chapters in the third part of the book show how the computational methods and
modelling ideas of the earlier chapters are being used by Bayesian econometricians. The
aims of these chapters are twofold. First, each chapter’s goal is to provide an overview of
a field which is as broad as possible. Second, each chapter aims to familiarize the reader
with the most recent research in the relevant field.

Chapter 6, on “Bayesian Methods in Microeconometrics” by Mingliang Li and Justin
Tobias, surveys a broad range of models used by microeconometricians. Beginning
with the regression model, this chapter considers extensions such as heteroskedasticity
and the hierarchical linear model (both of which draw on ideas from Chapter 4) and
provides a discussion of Bayesian treatments of endogeneity problems. A large num-
ber of models can be expressed as linear regression models in which the dependent
variable is a suitably defined latent variable. Examples include probit and logit. Such
nonlinear hierarchical models form the basis of much of this chapter which, after a
general treatment, provides several examples and extensions of multivariate models. As
part of the latter, multinomial and multivariate probit models are discussed extensively
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as are treatment effects models, which have played an important role in recent policy
debates (see also Chapter 1). Bayesian methods have proved popular with nonlinear
hierarchical models since MCMC methods involving data augmentation (discussed in
Chapter 6) can typically be used. Furthermore, Bayesian methods allow the researcher
to go beyond a study of model parameters and uncover the posterior of any feature of
interest; for example, in a policy study such features might be the effects of treatment on
the treated or a local average treatment effect, both of which are much more informative
than simply presenting parameter estimates. The chapter concludes with a discussion of
duration models. It is replete with many empirical examples and advice for the reader
interested in using Bayesian methods in practice.

In recent years, Bayesian methods have enjoyed particular success in macroeco-
nomics. Two main reasons for this are: (i) the fact that macroeconomic models often
involve high-dimensional parameter spaces (e.g. as in VARs) and (ii) macroeconomists
often desire to incorporate economic theory (e.g. as in the Bayesian estimation of DSGE
models). As discussed previously, these are two of the themes that run throughout
this Handbook—but they run particularly strongly in macroeconomics. Chapter 7 on
“Bayesian Macroeconometrics” by Marco Del Negro and Frank Schorfheide empha-
sizes these points repeatedly. The introduction to their chapter, with its “challenges
for inference and decisionmaking” in macroeconomics and response, offers a succinct
justification for the use of Bayesian methods in macroeconomics. Much of the chapter
deals with multivariate time series models such as VARs and vector error correction
models which are so popular in the field. But many macroeconomists may find the
clear exposition of Bayesian DSGE modelling of greatest interest. DSGE modelling is
a field where Bayesian methods are enjoying great popularity, but little in the way of
textbook exposition exists. This chapter takes the reader through both linear and non-
linear DSGE models, describing the practical issues that arise when implementing these
methods.

Macroeconomists often find that parameters change. Models that fit well in the 1970s
may not fit well now. Models that fit well in recessions may not fit well in expansions.
This challenge of building models that allow for the right amount and sort of change
(but not too much change or change of the wrong sort, since then the model can be
over-parameterized) lies at the heart of much current macroeconomic research. This
chapter takes the reader through many of the approaches (e.g. time-varying parameter
VARs, Markov switching models, and even DSGE models with Markov switching) that
are currently being used by macroeconometricians.

Chapter 7 also has a discussion of the challenges that arise since macroeconomists are
often working in data-rich environments. It shows how Bayesian methods have been
empirically successful in responding to these challenges. The chapter concludes with
a discussion of model uncertainty (often an important issue in macroeconomics) and
decision-making with multiple models.

Bayesian methods have been used increasingly in marketing, as emphasized in
Chapter 8 by Peter Rossi and Greg Allenby on “Bayesian Applications in Market-
ing”. This chapter describes various discrete choice models of consumers who may be



