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Preface to the Series
in Information and Computational Science

Since the 1970s, Science Press has published more than thirty volumes in its series
Monographs in Computational Methods. This series was established and led by the late
academician, Feng Kang, the founding director of the Computing Center of the Chi-
nese Academy of Sciences. The monograph series has provided timely information of
the frontier directions and latest research results in computational mathematics. It has
had great impact on young scientists and the entire research community, and has played
a very important role in the development of computational mathematics in China.

To cope with these new scientific developments, the Ministry of Education of the
People’s Republic of China in 1998 combined several subjects, such as computational
mathematics, numerical algorithms, information science, and operations research and
optimal control, into a new discipline called Information and Computational Science.
As a result, Science Press also reorganized the editorial board of the monograph series
and changed its name to Series in Information and Computational Science. The first
editorial board meeting was held in Beijing in September 2004, and it discussed the
new objectives, and the directions and contents of the new monograph series.

The aim of the new series is to present the state of the art in Information and
Computational Science to senior undergraduate and graduate students, as well as to
scientists working in these fields. Hence, the series will provide concrete and system-
atic expositions of the advances in information and computational science, encom-
passing also related interdisciplinary developments.

[ would like to thank the previous editorial board members and assistants, and all
the mathematicians who have contributed significantly to the monograph series on
Computational Methods. As a result of their contributions the monograph series
achieved an outstanding reputation in the community. I sincerely wish that we will ex-
tend this support to the new Series in Information and Computational Science, so that
the new series can equally enhance the scientific development in information and
computational science in this century.

Shi Zhongci
2005.7
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Computational geometry is an interdisciplinary subject composed of approximation theory,
differential geometry, computational mathematics, and computer graphics, etc. This sub-
Jject studies the structure, representation, analysis and synthesis of geometric shapes using
computers. It is the mathematical foundation of computer aided geometric design (CAGD).

In the 1960s, computer aided design (CAD) and computer aided manufacturing (CAM)
entered the shipbuilding, aviation and the automobile industries helping to shape, design
and manufacture. Stimulated by the development of computer technology and wide appli-
cations of industrial design, the subject of computational geometry has been developing
rapidly. Heretofore, many effective methods, such as Bézier, B-spline, non-uniform rational
B-spline (NURBS), subdivision, and partial differential equations have been established,
based on the parametric, implicit and discrete presentations of surfaces and the theory of
interpolation and approximation. At present, CAGD is still an attractive field with large
number of the researchers engaged with classical approximation theory, differential geo-
metry, computational mathematics and computer graphics, devoting themselves to this area,
helping to promote its comprehensive development. Under such a background, an emerging
field of research, geometric partial differential equation methods in computational geometry,
is generated.

It is generally known that partial differential equations (PDEs) are equations describing
the relationship among independent variables, unknown functions, and their partial deriva-
tives. However, geometric partial differential equations, which are used to control the motion
of surfaces and manifolds, are partial differential equations which include only geometric
quantities, except the time variable. Geometric partial differential equations are geomet-
ric, which means that they do not depend on specific parametrization. More importantly,
surfaces satisfying the geometric partial differential equations usually have some global op-
timal properties. For instance, the mean curvature flow, the Willmore flow, and the minimal
mean curvature variation flow minimize the area, the total squared mean curvature and the
total squared variation of the mean curvature of the surfaces, respectively. These optimal
properties make the generated surfaces possess a perfect fairing effect and even an aesthetic
feeling of art.

The method of solving various geometric design problems using geometric partial di-
fferential equations is named as the geometric partial differential equation method. In recent
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years, with the development of computer technology, the geometric partial differential equa-
tion method has exhibited obvious superiority in many fields, such as CAD, CAGD, surface
processing and image processing. The method has many advantages, such as solid theoreti-
cal basis, high efficiency, ease of programming, possessing a generic and wide applicability,
and so forth. It can be used in the domains of image processing, surface processing, quality
meshing, free-form surface design, surface blending, surface reconstruction, surface reco-
very, shape deformation, and so on.

Geometric partial differential equations also involve many other theoretical and appli-
cation areas. In the areas of physics, chemistry, biology, fluid mechanics, material science,
combustion theory, seismology and computer vision, there exists many interface motion
problems. Many of these problems can be abstracted as geometric problems and described
by geometric partial differential equations. In theory, geometric partial differential equa-
tions are closely related to geometrical analysis, manifold theory, topology, complex analy-
sis, variational method, geometric measurement theory, and critical point theory. For exam-
ple, the mean curvature flow and the Ricci flow relate to the positive mass conjecture and
Poincaré conjecture, respectively.

Earlier research on using PDEs to handle surface modeling problems can be traced back
to the work of Bloor et al. at the end of the 1980s. The basic idea in their work is to use bi-
harmonic equation on a rectangular domain to solve the blending and hole filling problems.
However, the biharmonic equation is not intrinsic. The solution of the equation depends
on specific parametrization. Therefore, the biharmonic equation is not a geometric partial
differential equation we considered in this book. There are many successful examples of
solving geometry design problems by geometric partial differential equations. In the early
days, the mean curvature flow was used to smooth noise surfaces and very desirable results
are obtained. However, since the second-order flow, such as the mean curvature flow, cannot
achieve a smooth blending of different surface patches, the fourth- and sixth-order geometric
flows are used afterward in the surface blending, free-form surface design, surface recovery,
and so on, yielding perfect results.

In conclusion, the geometric partial differential equation method used in computational
geometry is still a fresh field with wide development potential and is currently at its new-
born stage. The content of this book is mainly about the authors’ research results and work
experience in this field. Our wish is to promote the development of the geometric partial
differential equation method so as to make it a systemic, integrated and effective method in
the area of computational geometry. In Chapter 1, elementary differential geometry is re-
viewed, including surface representations, curvatures and differential geometric operators,
and Green’s formulas for differential operators. In Chapter 2, geometric partial differen-
tial equations for parametric surfaces are constructed for several general energy function-
als by complete variational calculus and normal variational calculus. Parallel to Chapter 2,
in Chapter 3, geometric partial differential equations are constructed for implicit surfaces
by several approaches and their relationship is discussed. Chapter 4 is devoted to the dis-
cretization of differential operators and curvatures and their convergence analysis. In Chap-
ter 5, discrete surface design by quasi finite difference method is discussed. Chapter 6 deals
with the spline surface design problem by quasi finite difference method and finite element
method. Subdivision surface design by finite element methods is presented in Chapter 7.
In Chapter 8, we discuss the level-set method for surface designs and its applications, such
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as surface reconstruction from scattered data set, and surface metamorphosis. In Chapter 9,
we discuss quality meshing by geometric flows, such as triangular, quadrilateral, tetrahedral
and hexahedral meshing with single domain or multiple domains.

The content of the book covers the main research work of the computational geome-
try research group in the Institute of Computational Mathematics and Scientific Engineer-
ing Computing in Chinese Academy of Sciences in the past decade. Postdoctoral fellows
Huanxi Zhao and Hongqing Zhao, PhD students Qing Pan, Qin Zhang, Dan Liu, Ming Li,
Yanmei Zheng, Zhucui Jing, Chong Chen, Xia Wang and Juelin Leng, successively, partici-
pated in this research work, and for their contributions to this book the authors are sincerely
grateful. My graduate students, Ming Li and Yanmei Zheng, carefully read the first draft
of the book, and made a comprehensive discussion in our seminar and put forward many
suggestions for revision. Professor Chadrajit Bajaj of the University of Texas at Austin, Dr.
Zhigiang Xu in the Institute of Computing Mathematics and Scientific Engineering Com-
puting, Professor Yongjie Zhang of Carnegie Mellon University and Dr. Wenqi Zhao of the
University of Texas at Austin cooperated with me and also contributed to the content of the
book. The authors give their earnest thanks to them.

The project was successively supported by Chinese Academy of Sciences Innovation
Fund (1770900), National Natural Science Foundation of China (10241004, 10371130,
60773165), National Key Basic Research Program (2004CB318000), NSFC key project
under grant (10990013) and NSFC Funds for Creative Research Groups of China (grant
No. 11021101). The State Key Laboratory of Scientific and Engineering Computing also
constantly supports the project with its various software tools, hardware facilities, as well
as research fund. Obviously, without these funds and supports, the project would not have
been completed smoothly. On the occasion of the forthcoming book, the authors give their
heartfelt thanks to these supports.

Lastly, the authors would like to thank their families for their continuous support.

Guoliang Xu

State Key Laboratory of Scientific and Engineering Computing
The Institute of Computational Mathematics and
Scientific/Engineering Computing

Chinese Academy of Sciences

Beijing, July, 2012






Acronyms

1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional

AMCF  Averaged Mean Curvature Flow

CAD Computer Aided Design

CAGD  Computer Aided Geometric Design
CAM Computer Aided Manufacture

CT Computed Tomography

EMDB  Electron Microscopy Data Bank

ENO Essentially Non-Oscillatory

FEM Finite Element Method

GHO Giaquinta-Hildebrandt Operator
GMRES Generalized Minimal RESidual method
GPDE  Geometric Partial Differential Equation
108 International Organization for Standardization
LBO Laplace-Beltrami Operator

MCF Mean Curvature Flow

MFEM  Mixed Finite Element Method
MMCVF Minimal Mean Curvature Variation Flow
MRI Magnetic Resonance Imaging

NURBS Non-Uniform Rational B-Spline

PDB Protein Data Bank

PDE Partial Differential Equation

QFDM  Quasi Finite Difference Method

QSDF  Quasi Surface Diffusion Flow

rRNA  ribosomal RNA

SAS Solvent-Accessible Surface

SDF Surface Diffusion Flow

SES Solvent-Excluded Surface

STEP  STandard for the Exchange of Product model data
SVD Singular Value Decomposition

TVD Total Variation Diminishing

VWS Van der Waals Surface

WENO Weighted Essentially Non-Oscillatory
WF Willmore Flow
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